
An Ultra-Fast Modularity-Based Graph
Clustering Algorithm

Leonardo Jesus Almeida and Alneu de Andrade Lopes

Institute of Mathematics and Computer Science - ICMC
University of São Paulo/Campus of São Carlos - (USP São Carlos)

P.O. Box 668, São Carlos, SP, Brazil

Abstract. In this paper, we propose a multilevel graph partitioning
scheme to speed up a modularity-based graph clustering technique. The
modularity-based algorithm was proposed by Newman for partitioning
graphs into communities without the input of the number of clusters.
The algorithm seeks to maximize a modularity measure. However, its
worst-time complexity on sparse graphs is O(n2), where n is the number
of vertices, which can be prohibitive for many applications. The mul-
tilevel graph partitioning scheme consists of three phases: (i) reduction
of the size (coarsen) of original graph by collapsing vertices and edges,
(ii) partitioning the coarsened graph, and (iii) uncoarsen it to obtain
a partition for the original graph. The rationale behind this strategy
is to apply a computationally expensive method in a coarsened graph,
i.e., with a significantly reduced number of vertices and edges. Empirical
evaluation using this approach demonstrate a significant speed up of the
modularity-based algorithm, keeping a good quality clusters partitioning.

Key words: Clustering, Graph Clustering, Multilevel Graph Clustering

1 Introduction

Clustering is an important problem with many applications, and a number of
different algorithms have been proposed over the past decades. Recently, com-
pelling application domains have become available in which to concept learning
requires effective handling of relational data. Social networks and web analysis,
for instance, require the representation of structural relations among people or
web pages. In these domains, data must represent relationship between enti-
ties rather than entity’s attributes. Such representation motivates approaches to
mine concepts from graph-based data.

Graphs are formed by a set of vertices and a set of edges that are connections
between pairs of vertices [1, 2]. Graph clustering is the task of partitioning similar
vertices into clusters taking into consideration the edge structure of the graph
so that there are many edges within each cluster and few edges between the
clusters [3, 4]. Unfortunately, finding an optimal partition is a problem known
to be NP-complete [5], so it’s necessary to use some heuristics for a practical
solution.

580 L.J. Almeida, A.A. Lopes

To overcome the problem of finding the number of clusters and speed up the
clustering process we apply the Newman’s modularity algorithm [6] as the parti-
tioning algorithm in a multilevel graph partitioning approach [7–9]. A multilevel
graph partitioning scheme [10, 8, 9] consists of three phases: (i) reduction of the
size (coarsen) of the original graph by collapsing vertices and edges; (ii) parti-
tioning the coarsened graph; and (iii) uncoarsen it to construct a partition for the
original graph . The rationale behind this strategy is to apply a computationally
expensive method in a coarsened graph with significant reduction of number of
vertices and edges. This approach can speed up the fast modularity algorithm,
keeping a good quality cluster partitioning.

In the following section we describe some background concepts in graph clus-
tering. In Section 3, we explain the proposed approach of joining Multilevel
Graph Partition and Newman’s modularity Q. In Section 4 we evaluate the ap-
proach on some datasets. Finally, in Section 5, we present the conclusions and
future work.

2 Graph Clustering

The problem of partitioning a graph in k different clusters is defined as follows:
Given a graph G = (V,E) with |V | = n, finding subgraphs V1, V2, ..., Vk such
that Vi∩Vj = ∅ for i 6= j,

⋃
i Vi = V and the number of edges of E that connects

vertices from different clusters are minimized. This quantity is known as edge-
cut. The clusters founded are generally represented in a vector P of length n,
such that for each vertex v ∈ V ,P [v] is in [1, k]. The value of k is usually given
as input for many graph clustering algorithm, although there are techniques to
suggest a good value.

The above goal described can be interpreted in various ways leading different
criteria for optimization. We briefly review some specific objective functions that
are most related to our work:

Ratio association maximization It takes the partitioning scheme that leads
to the highest intra-cluster average degree, i.e., the summation of number of
edges in the cluster i, links(Vi, Vi), divided by the number of vertices in i,
|Vi|, expressed by Equation 1.

RAssoc(G) = max
V1,...,Vk

k∑
i=1

links(Vi, Vi)
|Vi| . (1)

Ratio cut minimization The difference between Ratio cut and Ratio associ-
ation is that the first seeks to minimize the edge-cut while the second seeks
to maximize internal cluster edges weight. It is obtained with Equation 2

RCut(G) = min
V1,...,Vk

k∑
i=1

links(Vi, Vi)
|Vi| , (2)

where Vi is the subset of vertices V − Vi.

An Ultra-Fast Modularity-Based Graph Clustering Algorithm 581

Normalized cut minimization The normalized cut objective [11] seeks to
minimize the cut relative to the number of edges in a cluster instead of
its size. The objective is expressed by Equation 3

NCut(G) = min
V1,...,Vk

k∑
i=1

links(Vi, Vi)
degree(Vi)

, (3)

where degree(Vi) = |{(u, v) ∈ E|u, v ∈ Vi}|.
Modularity maximization Modularity measures the fraction of the cluster’s

inner edges eii minus the expected value ai if the edges are placed at random
[12]. Let eij be the half fraction of edges in G that connects vertex in different
clusters. So, |E| = eij + eji + eii. We can calculate ai by ai =

∑
j eij . The

measure is given by Equation 4

Q =
∑

i

(eii − a2
i). (4)

If the edges are connected at random the fraction of inner edges in a clus-
ter i is a2

i , which produces Q = 0. Any Q 6= 0 indicates the presence of
communities structure.

In 2004, Newman proposed an agglomerative hierarchical algorithm for parti-
tioning graphs into communities without the input of the number of clusters [6].
The algorithm seeks to maximize the modularity measure given by Eq.4. Starting
with each vertex as a single community, it repeatedly joins communities together
in pairs. At each step is selected the pair which promotes the highest modularity
gain, that is calculated by Equation 5.

∆Q = 2(eij − aiaj). (5)

Following a join, it’s necessary to update the eij ’s values, a task with worst-
time complexity O(n). At any time, there will be at most |E| edges in graph,
thus each step of the algorithm takes O(|E| + n). The worst-time cost occurs
when it’s necessary to perform n− 1 joins, so the entire algorithm runs in time
O((|E|+ n)n), or O(n2) in a sparse graph [6], which can be prohibitive.

In the next section, we propose a graph clustering technique based on the
Newman’s modularity algorithm [6] applied in a multilevel graph partitioning
approach [7–9], aiming to speed up the clustering process.

3 Multilevel Graph Partitioning

Multilevel schemes [10, 7] are relatively fast and provide excellent partitions for a
wide variety of graphs. Formally, a multilevel scheme works as follows: consider
a weighted graph G0 = (V0, E0), with weights both on vertices and edges. A
multilevel graph partitioning algorithm consists of the following three phases,
illustrated in Figure 1.

582 L.J. Almeida, A.A. Lopes

Coarsening phase The graph G0 is transformed into a sequence of smaller
graphs G1, G2, ..., Gt such that |V0| > |V1| > |V2| > ... > |Vt|.

Partitioning phase A k-way partition Pt of the graph Gt = (Vt, Et) is com-
puted that partitions Vt into k parts.

Uncoarsening phase The partition Pm of Gt is projected back to G0 by going
through intermediate partitions Pt−1, Pt−2, ..., P1, P0.

Fig. 1. Multilevel Graph Partition Scheme [8]

3.1 Coarsening phase

In the Coarsening phase, the initial graph G0 is iteratively reduced to smaller
graphs, such that the number of vertices and edges decrease. Coarsen a graph
from Gi to Gi+1, set of vertices in Gi are combined to form supervertices in
Gi+1. In order to preserve the connectivity in the smaller graph, the edges of
supervertex are taken to be the union of the edges of corresponding vertices in
the previous graph. In the case where the vertices which form the supervertex
have common adjacent vertices, the edge between the supervertex and these
vertices will be the union of the old edges.

The subset of vertices pairs chosen to be collapsed can be formally defined
in terms of matchings. A matching of a graph is a set of edges, no two of which
are incident on the same vertex [7]. In the following we describe three criteria
for selecting the maximal matching. We notice that the complexity of the coars-
ening phase, O(|E|), where |E| is again the number of edges in the graph, is

An Ultra-Fast Modularity-Based Graph Clustering Algorithm 583

asymptotically similar to three methods, although the proportionality constant
of Modified heavy-edge matching is greater [8].

Random matching (RM) The random matching generates the maximal mat-
ching using a randomized algorithm. It works as follows. Initially, all vertices
in the graph are marked as unmatched. Then, the vertices are randomly
visited until all vertices are visited or the graph size desired reduction is
achieved. If an unmatched vertex v is selected for matching, we then seek
randomly one of its neighbors that has not been matched yet. If a vertex
u exists, we mark both vertices as matched and include the edge (v, u) in
matching.

Heavy-edge matching (HEM) The idea behind heavy-edge matching is to
reduce the edge-weight of the coarser graph by selecting a maximal matching
whose edges have large weight. A heavy-edge matching is, using a randomized
algorithm, similar to random matching. Let v be the selected vertex, and
H the subset of unmatched v’s neighbors. Heavy-edge matching selects for
matching the vertex u ∈ H, such that the edge (v, u) has greater weight.

Modified heavy-edge matching (MHEM) The Modified heavy-edge match-
ing is closely similar to heavy-edge matching. The difference occurs when
there are more than one maximal weight adjacent vertices. Let v be the se-
lected vertex, and H the subset of unmatched v’s neighbors with maximal
edge weight, and Wv−u the sum of the weights of the edges of u that con-
nect u to vertices adjacent to v. Modified Heavy-edge matching selects for
matching the vertex u ∈ H, such that Wv−u is maximized.

3.2 Partitioning phase

The partitioning phase of a multilevel scheme computes the partition Pt of the
coarser graph Gt. Various algorithms can be used to obtain the partition such as
iterative, hierarchical, divisive or agglomerative [4]. Since the size of the coarser
graph Gt is significantly smaller then the original one (depending on coarsening
stop criterion, |Vt| < 100), this step will spend a small amount of time [7].

Our implementation uses the Fast Modularity algorithm in this phase. The
algorithm is an agglomerative hierarchical method that seeks a greedy opti-
mization of modularity Q measure. As one feature, the method calculates the
modularity value along each step and it selects the partition of the step which
had the greater modularity value.

3.3 Uncoarsening phase

During the uncoarsening phase, the partition found out in partitioning phase
(Pt) is projected back through each level until the original graph is achieved.
Since each supervertex of Gi+1 should contain two or more distinct vertices
of Gi, we can obtain Pi by simply assigning to the collapse vertices the same
partition of supervertex in Pi+1. Even though Pi+1 is a local minima partition
of Gi+1, the projected partition Pi may not be at a local minima with respect

584 L.J. Almeida, A.A. Lopes

to Gi . Since Gi is less coarse, it has more degrees of freedom that can be used
to improve Pi , and decrease the edge-cut. Hence, it may still be possible to
improve the projected partition of Gi−1 by local refinement heuristics [7].

4 Experiments

We have applied our algorithm on two scientific graphs: Netscience and CBR-
ILP-IR. The Netscience is a network of coauthorships between scientists [13].
The graph has a total of 1,589 vertices in it, representing scientists from a broad
variety of fields. As the graph has more than one component, only the 379
vertices and 914 edges falling in the largest connected were used. The CBR-ILP-
IR is a network of similarity between articles from three different topics: Case
Based Reasoning, Inductive Logic Programming and Information Retrieval. The
graph has a total of 574 vertices that represents documents, and the 19,213 edges
represent the similarity between the documents calculated using cosine similarity
measure.

We evaluated the proposed algorithm partitioning quality considering the
objective functions described in Section 2. We also considered the algorithm
runtime in milliseconds. The three matching schemes described in Section 3 were
implemented and used in Coarsening Phase for the two graphs. In Partitioning
Phase we used our Fast Modularity algorithm [6] implementation. We decided
using no refinement approach, so in the Uncoarsening Phase we simple assign to
inner vertices the same partition of Supervertex. The decision was taken because
we aimed to verify the effectiveness of using the Fast Modularity Algorithm on
the partitioning Phase. Adding a refinement algorithm would certainly improve
the quality performance, but it could hide an bad initial partition created by
the Fast Modularity. As the three approaches are based on random choices,
we repeated 100 times each run and we considered the measures average. The
experiments were perfomed on an Intel Xeon 2 GHz processor with 4GBytes of
RAM memory.

In Table 1 is presented the results of our experiments with Netscience and
CBR-ILP-IR data sets. For the both graphs, HEM and MHEM lead to partitions
whose quality measures are better than that ones produced by RM. HEM and
MHEM have similar overall quality. Nevertheless, all the three matching schemes
have worse quality results than that obtained by applying the Fast Modularity
algorithm on entire CBR-ILP-IR graph. The CBR-ILP-IR graph is denser than
Netscience, and for many edges, the weights values are similar. Thus, as the
matchings are performed at random, it could make unsuitable joins.

The variation of modularity Q is minimal, but it had a little increase when
it was used multilivel partitioning HEM or MHEM on NetScience. Otherwise, it
decrease a little on CBR-ILP-IR. On Netscience, the coarsening phase produced
reduced graphs for partitioning better than on CBR-ILP-IR, because of its spar-
sity. So, as the number of edges is smaller in reduced graph, the fractions eii and
eij are more meaningful for Fast Modularity. For both graph, the RM schemes

An Ultra-Fast Modularity-Based Graph Clustering Algorithm 585

produced low modularity values, which can be explain because RM tends do
produce graphs with larger edge-cut than HEM and MHEM.

In Figure 2 it’s shown a visualization of Netscience and CBR-ILP-IR graphs.
The regions limited by dashed lines represent the partitions founded by our
algorithm using HEM in coarsening phase, and Fast Community as partitioning
algorithm. In spite of the high number of edges, in Figure 2(a) we can see the
three different groups representing the three main areas CBR, ILP and IR. The
Netscience graph, Figure 2(b), has less edges, so it is clearer to we see each
of seven partitions founded by the our algorithm. Again the lines separate the
partitions, and the shape’s size indicates the vertex degree, which means how
many papers an author published with coauthors.

Table 1. Objectives functions values and elapsed algorithm runtime for CBR-ILP-IR
and Netscience data sets

CBR-ILP-IR None RM HEM MHEM

RAssoc(G) 161.37 84.57 120.34 122.81
RCut(G) 40.11 97.12 49.13 53.42
NCut(G) 0.63 1.44 0.69 0.76

Q 0.388 0.194 0.352 0.345

T ime(ms) 68514 24345 26276 26841

Netscience None RM HEM MHEM

74.83 30.86 34.62 35.35
5.64 2.69 1.84 1.87
1.19 0.58 0.38 0.39
0.462 0.463 0.478 0.477

22670 6422 5779 5895

(a) CBR-ILP-IR (b) Netscience

Fig. 2. Graph representing CBR-ILP-IR and Netscience data sets rendered by Prefuse
[14]. The colors represent the clustering found by the algorithm using HEM in Coars-
ening Phase and Fast Modularity in Partitioning Phase.

586 L.J. Almeida, A.A. Lopes

We ran another experiment comparing Fast Modularity and HEM on two
other networks. The cond-2003 is a network of coauthorships between scientists
posting preprints on the Condensed Matter E-Print Archive between 1995 and
2003, and the cond-2005 which is an extension including postings until 2005
[15]. Both networks are available on Newman’s network datasets 1. The cond-
2003 network has 31,162 vertices and 116,181 edges, while cond-2005 has 40,420
vertices and 171,734 edges.

In Table 2 is presented the results of second experiment. For cond-2003 net-
work the modularity values produced by both algorithms are close, besides HEM
were a little better on cond-2005. For both networks, HEM runtime is smaller
than Fast Modularty. As our aim was to analise how runtime grows along with
the network size, we also plotted a graphic comparison between both algorithms
runtime as is shown in Figure 3. The points in each graphics are related to
the number of vertices (edges) in netscience, CBR-ILP-IR,cond-2003 and cond-
2005, respectively. Taking into account only the number of vertices in the network
the Fast Modularity’s runtime grows faster than HEM, Figure 3(a). The same
occurred when the runtimes was plotted against the number of edges, as it is
presented in Figure 3(b). However the HEM runtime grow curve tends to fit a
liner function in both graphics.

Performance is an important issue when we work on large graphs, and the
main advantage of our approach is the runtime reduction. On the evaluated
graphs the multilevel approach speed up the clustering tasks by factors from 2
to 7 compared to Fast Modularity algorithm.

Table 2. Modularity quality and elapsed algorithm runtime for cond-2003 and cond-
2005 networks

cond-2003 Fast Modularity HEM

Q 0.415 0.411

T ime(ms) 161399 25097

cond-2005 Fast Modularity HEM

0.397 0.406

338995 45444

5 Conclusion

In this paper we presented a method for clustering data represented as graphs.
The method follows a multilevel graph clustering schemes, making use of the Fast
Modularity algorithm in the partitioning phase. This approach has a considerable
speed advantage over direct applying the partitioning algorithm on an entire
graph. As the partitioning algorithm works on the reduced graph, the runtime
complexity is smaller than it would be if it was done on entire graph. So, we
observed that the entire method worst-time is O(|E|), which allow us to perform

1 http://www-personal.umich.edu/ mejn/netdata/

An Ultra-Fast Modularity-Based Graph Clustering Algorithm 587

(a) Runtime by number of vertices

(b) Runtime by number of edges

Fig. 3. Performance comparison of Fast Modularity and HEM

clustering in large graphs in a short time. Moreover, the method keeps partition
quality, since the coarser graph, on which the clustering algorithm is applied, is
built attempting to be a good representation of original one.

In our experiments, we evaluated the proposed algorithm on three different
graphs observing the runtime and four objectives measures. For the two graphs,
we compared the results of using multilevel partitioning RM, HEM and MHEM
against the original Fast Modularity Algorithm. HEM and MHEM produced
quality results close to Fast Modularity, but in much smaller runtime.

We consider that our method can also have the partitions quality improved
by applying a refinement algorithm on uncoarsening phase. The refinement al-
gorithm will allow to switch boundary vertices from a partition to other up-
grading an objective function, without increase the global worst-time. Another
interesting point of improvement is to modify Fast Modularity algorithm in the
Partitioning Phase to take into account edges weights.

588 L.J. Almeida, A.A. Lopes

References

1. Bollobas, B.: Modern Graph Theory. Springer (July 1998)
2. Diestel, R.: Graph Theory (Graduate Texts in Mathematics). Springer (2005)
3. Cook, D.J., Holder, L.B., Ketkar, N.: Unsupervised and supervised learning in

graph data. In: Mining Graph Data. John Wiley & Sons (2007)
4. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1) (2007) 27–64
5. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-

lems. Theoretical Computer Science 1 (1976) 237–267
6. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.

Physical Review E 69 (2004) 066133
7. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Supercom-

puting ’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing,
New York, NY, USA, ACM Press (1995)

8. Karypis, G., Kumar, V.: Multilevel k -way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48 (1998) 96–129

9. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors: A
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(11) (2007) 1944–1957

10. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. Tech-
nical Report SAND93-1301, Sandia National Laboratories (1993)

11. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(8) (2000) 888–905

12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in
networks. Physical Review E 69 (2004) 026113

13. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
74(3) (2006) 036104

14. Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information
visualization. In: CHI ’05: Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, ACM (2005) 421–430

15. Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings
of the National Academy of Sciences of the United States of America 98 (2001)
404

