
Combining Unigrams and Bigrams in
Semi-Supervised Text Classification

Igor Assis Braga, Maria Carolina Monard, Edson Takashi Matsubara

Mathematics and Computer Science Institute
University of Sao Paulo

Sao Carlos, SP 13566-590
Brazil

{igorab,mcmonard,edsontm}@icmc.usp.br

Abstract. Unlabeled documents vastly outnumber labeled documents
in text classification. For this reason, semi-supervised learning is well
suited to the task. Representing text as a combination of unigrams and
bigrams has not shown consistent improvements compared to using uni-
grams in supervised text classification. Therefore, a natural question is
whether this finding extends to semi-supervised learning, which provides
a different way of combining multiple representations of data. In this
paper, we investigate this question experimentally running two semi-
supervised algorithms, Co-Training and Self-Training, on several
text datasets. Our results do not indicate improvements by combining
unigrams and bigrams in semi-supervised text classification. In addition,
they suggest that this fact may stem from a strong “correlation” between
unigrams and bigrams.

1 Introduction

Text Classification (TC) has received a great deal of attention from the machine
learning community in the last ten years. The focus has primarily been on su-
pervised classification, although there has also been interest in Semi-Supervised
Learning (SSL). In SSL, one can derive a classifier from labeled and unlabeled
data. This is particularly suited for many text classification tasks, since it is
often the case that many unlabeled documents are available although labeling
them is expensive.

A recurrent issue in TC is text representation. Extracting words, or unigrams,
is by far the most common way to represent raw text in TC [1]. While this feature
extraction technique is applicable to almost any kind of text, it has been found
to be poor for certain classification tasks [2]. For dealing with this deficiency,
word n-grams, i.e., sequences of n consecutive words, were proposed by various
researchers as a way to expand the standard unigram representation model [3].

Combinations of unigrams and n-grams, particularly bigrams (n = 2), have
not shown consistent improvement in supervised text classification [1, 3]. Thus,
a natural question arises: does this behavior extend to semi-supervised learning?
In this paper, we investigate this question, which, to the best of our knowledge

490 I.A. Braga, M.C. Monard, E.T. Matsubara

is yet unanswered. We conducted experiments on traditional text datasets using
both the Co-Training and the Self-Training semi-supervised algorithms.
The results do not indicate a major performance improvement by combining
unigrams and bigrams in SSL. Based on these results and on other measurements
taken during the execution of the Co-Training algorithm, we have found a
possible explanation of why combining unigrams and bigrams does not help
boost classification performance in SSL and even in the supervised case.

The remainder of this paper is organized as follows. In Section 2, we describe
the Co-Training and the Self-Training algorithms. In Section 3, we review
some related work and explain two different ways of combining unigrams and
bigrams in semi-supervised learning. In Section 4, we present the experimental
design and results. Finally, we discuss our findings and future work in Section 5.

2 Semi-Supervised Learning

Semi-Supervised Learning (SSL) has been applied to classification tasks in cases
where labeled examples are scarce in comparison to available unlabeled examples.
More precisely, we want to induce a classifier h → X × Y using a set of j
labeled examples {(xi, yi)

j
i=1} and a set of k unlabeled examples {(xi)

j+k
i=j+1},

with k >> j. Algorithms in SSL can be divided into single-view and multi-view
algorithms. The latter requires that examples be represented by at least two
different feature sets that are each nearly sufficient for classification on their
own.

In the next section, we show two different ways of combining unigrams and
bigrams in SSL. One of them uses a single-view algorithm, whereas the other
requires a multi-view algorithm. In the remainder of this section, we present a
single-view algorithm, Self-Training, and a multi-view one, Co-Training.
Both of them were used in the experiments we describe later.

2.1 Self-Training

Self-Training is a wrapper semi-supervised algorithm [4] that makes use of
a supervised learning algorithm that “trains” itself. Starting from a (possibly)
small labeled set, the supervised learning algorithm derives a classifier, which is
used to classify unlabeled examples that are later inserted into the labeled set.
This expanded labeled set forms the basis of another induction step, and the
process is repeated.

Algorithm 1 describes Self-Training. It takes as input a set L of labeled
examples and a set U of unlabeled examples. Initially, a classifier h is derived
using L and a supervised learning algorithm, which needs to produce classifiers
that output a confidence score for its predictions. After h is derived, it is used
to classify all examples in a randomly chosen U ′ ∈ U . The examples classified
with the greatest confidence scores are selected by the function bestExamples
and later inserted in L. If binary classification is all that matters, bestExamples

Combining Unigrams and Bigrams in Text Classification 491

Algorithm 1: Self-Training

Input:
– a set L of labeled examples
– a set U of unlabeled examples

repeat
use the examples in L to derive a classifier h;
randomly choose some examples from U , and insert them in U ′;
L′ = all examples in U ′ labeled by h;
L′′ = bestExamples(L′);
L = L ∪ L′′;
remove from U ′ all the examples in L′′;

until L′′ = ∅ ;
Output: h

can select the p most confident positive examples and the n most confident neg-
ative examples from L′. The algorithm stops when there are no more unlabeled
examples available or other stopping criteria are met.

2.2 Co-Training

The Co-Training algorithm [5] is the multi-view counterpart of Self-Training.
Interest in multi-view algorithms comes from the fact that they take advantage
of multiple representations (views) of the data to produce better classifiers. Co-
Training acts as if two Self-Training routines were executed simultaneously
over the same sets L and U , the differences being that 1) multiple classifiers are
derived, each one in a different view of the examples in L; and 2) the examples
labeled by each classifier are also available to derive the other classifiers in the
next iteration.

Hereafter, we assume that two views of the examples are available, so that an
example x is a pair (x1,x2), where x1 and x2 are the values of the features that
describes the example x in views 1 and 2 respectively. The general conditions
that enable Co-Training to be successful are that x1 and x2 should not be too
correlated and that the classifiers we want to learn in each view give the same
label to x1 and x2 [6].

Algorithm 2 describes Co-Training. It is similar to Self-Training, al-
though now the function bestExamples has to select the most confident ex-
amples classified by h1 and h2. In the original Co-Training algorithm [5],
bestExamples selects the p most confident positive examples and the n most con-
fident negative examples in each L′

1 and L′
2. With this version of bestExamples

in mind, at most 2p + 2n examples are labeled at each iteration, since the same
example can be selected from both L′

1 and L′
2.

492 I.A. Braga, M.C. Monard, E.T. Matsubara

Algorithm 2: Co-Training

Input:
– a set L of labeled examples
– a set U of unlabeled examples

repeat
use view x1 of the examples in L to derive a classifier h1;
use view x2 of the examples in L to derive a classifier h2;
randomly choose some examples from U , and insert them in U ′;
L′

1 = all examples in U ′ labeled by h1;
L′

2 = all examples in U ′ labeled by h2;
L′′ = bestExamples(L′

1, L
′
2);

L = L ∪ L′′;
remove from U ′ all the examples in L′′;

until L′′ = ∅ ;
Output: h1, h2

3 Combining Unigrams and Bigrams in Text
Classification

The study of unigram and bigram combinations started in supervised text clas-
sification. Next, we briefly discuss some previous work along this line. Following
that, we explain two different ways of combining unigrams and bigrams in semi-
supervised learning.

Supervised TC There are positive and negative results reported in the text
classification literature on the subject of combining unigrams and bigrams. We
review recent work, as good reviews can be found elsewhere [3, 7].

Bekkerman et al. [3] present a critical summary of both positive and negative
results. They state that the majority of positive results are not significantly
better than the baseline results of the datasets used, and, when they are, the
baseline results tend to be very low. They also propose to combine unigrams
and bigrams in supervised text classification using a feature generation method
based on unigram and bigram clustering. However, the improvements achieved
on the well known 20 Newsgroup dataset are not statistically significant.

Caropreso et al. [8] evaluate the usefulness of unigrams and bigrams in a
learner-independent manner. They use some feature evaluation metrics to ana-
lyze the discrimination power of bigrams compared to that of unigrams. In the
Reuters-21578 dataset, they find that there are bigrams that are more discrimi-
native than unigrams. However, when more and more bigrams are selected at the
expense of letting unigrams out of the feature set, the classification performance
in the same dataset tends to degrade.

Pang et al. [2] analyze the use of machine learning techniques for sentiment
classification in textual data. They represent text documents using, among oth-
ers, unigrams, bigrams, and a single feature set that joins together unigrams

Combining Unigrams and Bigrams in Text Classification 493

and bigrams. This expanded feature set is then compared to what is achievable
by using unigrams or bigrams alone on the Movie Review dataset. Their results
show that the feature set composed of unigrams and bigrams does not reach a
classification performance better than unigrams.

Semi-supervised TC As far as we know, there was no attempt to study uni-
gram and bigram combinations in semi-supervised text classification. Previous
work in semi-supervised TC has only considered the use of unigrams for text rep-
resentation [9–11]. Therefore, it would be interesting to verify if this combination
can improve classification performance in semi-supervised TC.

As a first approach, we can combine unigrams and bigrams as it has been
done in supervised learning: joining the two representations together and using
a single-view semi-supervised algorithm to learn a classifier from it. However, it
should be observed that the way unigrams and bigrams will interact with each
other is fully determined by the learning algorithm used.

As we described in the last section, a multi-view semi-supervised algorithm
can be used when examples can be represented by at least two different feature
sets that are each nearly sufficient for classification on their own. As our exper-
iments in the next section suggest, this happens to be the case of unigrams and
bigrams. An interesting characteristic of this combination is that each represen-
tation is kept in its own “world”, since two classifiers are independently induced
in each representation.

4 Experimental Evaluation

We conducted experiments to evaluate unigram and bigram combinations in
semi-supervised learning. Particularly, we tried a single-view combination using
Self-Training and a multi-view combination using Co-Training. We also
ran Self-Training using unigrams and bigrams alone for comparison.

4.1 Datasets

Five text datasets were used in the experiments. One of them consists of the web
pages view from the Courses dataset [5]; three are subsets of the UseNet news
articles 20 Newsgroups dataset1; and the last one is the polarity_dataset v2.0
from the Movie Review Data2 — Table 1. All datasets except Courses are
balanced.

The datasets were decomposed into the attribute-value format, where uni-
grams (1-gram) were used as one view and bigrams (2-gram) as the second view
of the datasets. To this end, we used PreTexT II3, a locally-developed text pre-
processing tool. Stop-word removal and stemming [12] were carried out for each

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.cs.cornell.edu/People/pabo/movie-review-data/
3 http://www.icmc.usp.br/~caneca/pretext.htm

494 I.A. Braga, M.C. Monard, E.T. Matsubara

Table 1. Datasets description and attributes

Dataset #Doc View #Attr #Attr. P Class %Class

course 22%
Courses 1050 1-gram 12254 3313 non-course 78%

course 22%
2-gram 46421 2073 non-course 78%

pc 50%
Hardware 1943 1-gram 13398 3958 mac 50%

pc 50%
2-gram 47331 2846 mac 50%

car 50%
Vehicles 1984 1-gram 14048 5362 motorcycles 50%

car 50%
2-gram 51404 3605 motorcycles 50%

baseball 50%
Sports 1993 1-gram 14254 5741 hockey 50%

baseball 50%
2-gram 60114 4548 hockey 50%

pos. review 50%
Movie 2000 1-gram 25302 10669 neg. review 50%

pos. review 50%
2-gram 299423 9186 neg. review 50%

dataset. After that, unigrams and bigrams that appeared in 3 or less documents
were removed. The result of this pre-processing step is tabulated in Table 1,
which shows the dataset name (Dataset); number of documents in the dataset
(#Doc); number of generated attributes (#Attr); number of attributes left after
pre-processing (#Attr. P); and class distribution (%Class).

4.2 Methodology

The supervised learning algorithm we used in Self-Training and Co-Training
was the Multinomial Naive Bayes (MNB) [13]. In order to obtain a lower bound
of the error that the algorithms can reach in these datasets, we measured the
error rate of MNB using the full datasets and 10-fold cross-validation. Results
(AUC and mean error rate) are shown in Table 2. It can be observed that, al-
though there are no significant differences related to the AUC values for all the
datasets, the error rate (%Error) is a little higher using bigrams (2-gram). It is
also possible to observe that except for the Movie dataset and for the Hard-
ware dataset using bigrams, the error rate of the classifiers is low. Moreover,
using unigrams and bigrams together as a single feature set (1+2-gram) does
not always improve classification performance compared to unigrams (1-gram),
and, when it does, it is by a small margin. These results are in accordance with
our analysis of previous work.

As the datasets we use contain only labeled examples, we ran Self-Training
and Co-Training in a simulation mode, in which the true labels of an expressive

Combining Unigrams and Bigrams in Text Classification 495

Table 2. Multinomial Naive Bayes results

Multinomial Naive Bayes
Dataset View AUC %Error

1-gram 0.97 (0.01) 4.57 (1.61)
Courses 2-gram 0.98 (0.01) 5.24 (1.03)

1+2-gram 0.97 (0.01) 4.86 (1.45)

1-gram 0.98 (0.01) 6.23 (1.37)
Hardware 2-gram 0.96 (0.01) 12.15 (2.23)

1+2-gram 0.98 (0.01) 6.38 (1.69)

1-gram 0.99 (0.01) 2.27 (1.33)
Vehicles 2-gram 0.99 (0.01) 4.84 (2.13)

1+2-gram 0.99 (0.01) 1.82 (1.19)

1-gram 0.99 (0.03) 1.15 (0.79)
Sports 2-gram 0.99 (0.01) 3.01 (0.67)

1+2-gram 0.99 (0.01) 0.95 (0.65)

1-gram 0.87 (0.03) 19.00 (2.99)
Movie 2-gram 0.84 (0.04) 23.55 (3.32)

1+2-gram 0.87 (0.03) 18.60 (3.25)

number of examples are hidden from the algorithms to create the unlabeled set.
Furthermore, to assess the behavior of both algorithms using 10 cross-validation,
the sampling method was adapted as follows: first, the examples in both views
are paired and marked with an ID. Then, the folds are sampled so that both
training and test samples are compatible, i.e., an example identified with a given
ID appears only in the training or in the test sample in both views.

All experiments were carried out using the same number of initial labeled
examples L, distributed accordingly to the class distribution of the complete
dataset. As in SSL we are concerned with small labeled sets, we fixed this number
as 30, which corresponds to 1.5% of the number of examples in the largest
dataset. It is possible to use the class distribution of the complete dataset because
we are executing the algorithms in a simulation mode, where the true labels of the
datasets are known. Previous experiments have shown that the best results are
obtained if the true class distribution of the examples is known [14]. However, in
a real case, it would be unwise to estimate this distribution using the few labeled
examples in L.

For the sake of simplicity, consider that examples belong to two possible
classes {⊕,	}. In each iteration of Self-Training, p examples most confidently
classified as ⊕ and n examples most confidently classified as 	 are selected. The
confidence score is measured by the MNB estimative of P (⊕|x). As for Co-
Training, the same procedure is carried out for each view, and the confidence
score is measured by the estimative of P (⊕|x1) in the first view and P (⊕|x2) in
the second view. Moreover, if an example is selected in both views and h1(x1) 6=
h2(x2), the chosen label is the one given with higher confidence (ties broken
randomly). For the unbalanced dataset Courses (p, n) = (2, 8), and for the
remaining datasets (p, n) = (5, 5). Considering the different class distribution of

496 I.A. Braga, M.C. Monard, E.T. Matsubara

the datasets, p+n = 10 is the minimum number that covers the class distribution
of all the datasets. This means that in each iteration, 10 examples from U ′

are labeled by Self-Training while a minimum of 10 and a maximum of 20
examples can be labeled by Co-Training.

4.3 Results

In what follows, 1-gram represents the unigram view representation, 2-gram the
bigram representation, and 1+2-gram represents the two views joined together
in Self-Training. Tables 3 and 4 summarize the experimental results. We use
the AUC, mean error rate (%Error) and the number of incorrectly labeled exam-
ples (#Errors) to assess the experiments. Values between brackets refer to the
standard deviation. The AUC and the mean error rate refer to the classification
on the test set, i.e. to the final classifiers generated by Self-Training or Co-
Training. On the other hand, #Errors refers to the mean number of incorrectly
labeled examples during the training phase, where the set L is incremented with
new labeled examples.

Table 3. Self-Training results

Self-Training
Dataset View AUC %Error #Errors

1-gram 0.96 (0.01) 5.43 (1.68) 45.20 (3.80)
Courses 2-gram 0.95 (0.02) 6.29 (1.50) 62.60 (8.11)

1+2-gram 0.96 (0.01) 5.24 (1.97) 40.40 (2.07)

1-gram 0.81 (0.12) 24.61 (10.80) 424.00 (130.93)
Hardware 2-gram 0.76 (0.15) 28.94 (10.51) 474.25 (198.17)

1+2-gram 0.86 (0.06) 18.76 (6.27) 341.89 (105.52)

1-gram 0.99 (0.01) 3.88 (1.57) 74.50 (15.96)
Vehicles 2-gram 0.98 (0.01) 5.44 (1.03) 137.60 (31.96)

1+2-gram 0.99 (0.01) 3.28 (1.35) 62.50 (4.88)

1-gram 0.99 (0.01) 2.16 (0.98) 39.40 (9.74)
Sports 2-gram 0.99 (0.01) 4.07 (0.87) 76.20 (22.72)

1+2-gram 0.99 (0.01) 1.91 (0.82) 36.90 (8.29)

1-gram 0.66 (0.07) 36.30 (5.86) 650.40 (85.46)
Movie 2-gram 0.60 (0.05) 42.90 (3.84) 759.40 (65.32)

1+2-gram 0.65 (0.07) 37.45 (6.03) 643.80 (123.36)

As can be observed in Table 3, Self-Training results do not show a con-
sistent improvement by joining together unigrams and bigrams (1+2-gram). Al-
though the worst results are the ones where only bigrams (2-gram) are used,
results using only unigrams (1-gram) are compatible with the ones obtained
using 1+2-gram, except for the Hardware dataset.

In Co-Training, if we do not allow the classifiers h1 and h2 to label exam-
ples for each other, we are left with Self-Training using unigrams and bigrams

Combining Unigrams and Bigrams in Text Classification 497

Table 4. Co-Training results

Co-Training
Dataset View AUC %Error #Errors

1-gram 0.97 (0.01) 5.52 (2.19)
Courses 2-gram 0.96 (0.02) 6.00 (1.49) 44.50 (1.96)

1-gram 0.87 (0.06) 20.28 (7.76)
Hardware 2-gram 0.84 (0.07) 23.88 (6.96) 378.33 (39.80)

1-gram 0.99 (0.01) 4.36 (1.45)
Vehicles 2-gram 0.98 (0.01) 6.38 (0.30) 102.30 (27.65)

1-gram 0.99 (0.01) 1.96 (1.10)
Sports 2-gram 0.99 (0.01) 3.96 (1.19) 42.80 (15.20)

1-gram 0.67 (0.09) 37.55 (7.42)
Movie 2-gram 0.65 (0.09) 38.70 (7.36) 681.10 (128.16)

alone (remember from Section 2 that Co-Training is the multi-view counter-
part of Self-Training). For this reason, combining unigrams and bigrams with
Co-Training is worthwhile only when the classifiers obtained by Co-Training
achieve better classification performance than the classifiers obtained by Self-
Training using unigrams or bigrams alone. Observing Tables 3 and 4, it is
possible to verify that Co-Training is not better than Self-Training using
unigrams (1-gram) or bigrams (2-gram) on the Vehicles and Movie datasets.
On the Hardware dataset, the inverse situation occurrs, and on the other
datasets, the results of both are similar.

5 Discussion and Future Work

The results reported in the previous section do not show an improvement in clas-
sification performance when we combine unigrams and bigrams in a single-view
and in a multi-view semi-supervised setting. Pursuing a possible explanation
for these results, we plotted, for each dataset, a histogram of the mean number
of examples correctly and incorrectly labeled by Co-Training versus p1 + p2,
where p1 = P (⊕|x1) and p2 = P (⊕|x2). The value of p1 +p2 for a given example
x will be close to 0 if both h1 and h2 classify x as 	 with high confidence. On
the other hand, the value of p1 + p2 will be close to 2 if both h1 and h2 classify
x as ⊕ with high confidence. Figures 1, 2, and 3 show some histograms for the
Sports, Hardware, and Movie datasets. All other histograms can be found
in http://www.icmc.usp.br/~igorab/hist/.

It is possible to observe in Figure 1 that most of the correctly labeled ex-
amples in the Sports dataset fall in the bins where p1 + p2 equals or is next
to 0 or 2. In other words, for most of the examples labeled by Co-Training in
this dataset, the classifiers h1 and h2 agree in their classification with high con-
fidence. Simply put, this means that one classifier did not help the other, what
causes the results in this dataset to be very close to the ones of Self-Training
using unigrams or bigrams alone.

498 I.A. Braga, M.C. Monard, E.T. Matsubara

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2

#L
ab

el
ed

p1+p2

Sports - Correctly Labeled

Fig. 1. Number of correctly labeled examples (#Labeled) versus p1 +p2 in the Sports
dataset

The same pattern was observed in the histograms of the other datasets. In the
Hardware dataset, for which the results are favorable to combining unigrams
and bigrams, most of the correctly labeled examples still fall near 0 or 2, although
the histogram in Figure 2 shows relatively more correctly labeled examples in
other bins. Furthermore, in the Movie dataset, for which both Co-Training
and Self-Training perform equally bad, the histogram in Figure 3 shows that
most of the incorrectly labeled examples are next to bins 0 and 2. In other words,
both classifiers h1 and h2 agree with high confidence in incorrectly labeling these
examples.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.5 1 1.5 2

#L
ab

el
ed

p1+p2

Hardware - Correctly Labeled

Fig. 2. Number of correctly labeled examples (#Labeled) versus p1 + p2 in the Hard-
ware dataset

Combining Unigrams and Bigrams in Text Classification 499

 0

 50

 100

 150

 200

 250

 0 0.5 1 1.5 2

#L
ab

el
ed

p1+p2

Movie - Incorrectly Labeled

Fig. 3. Number of incorrectly labeled examples (#Labeled) versus p1+p2 in the Movie
dataset

In summary, these histograms show a case of strong view correlation for uni-
grams and bigrams, since the classifiers derived on each of them predicts equally
with high confidence in most of the examples. However, one of the requirements
for Co-Training to succeed is that the views should not be too correlated [6].
This seems a plausible explanation for why combining unigrams and bigrams in
Co-Training does not give better results than Self-Training using unigrams
and bigrams alone. We conjecture that this view correlation is also responsible
for the small improvements observed when unigrams and bigrams are joined
together in Self-Training and in plain supervised learning.

As future work, we plan to extend the experimental evaluation to include
more datasets. We also want to explore a text representation scheme based on
carefully selected bigrams (or even trigrams). We would like to combine uni-
grams only to n-grams that, in a given domain, are more meaningful together
than apart. This selection of bigrams can start by using methods for term ex-
traction, which is a subject widely studied in the Natural Languague Processing
community [15, 16].

Acknowledgments. The authors wish to thank research fund agencies FAPESP
and CNPq for their continuous support.

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (2002) 1–47

2. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: EMNLP ’02: Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Processing. (2002) 79–86

500 I.A. Braga, M.C. Monard, E.T. Matsubara

3. Bekkerman, R., Allan, J.: Using bigrams in text categorization. Technical report,
University of Massachusetts (2003) www.cs.umass.edu/~ronb/papers/bigrams.

pdf.
4. Chapelle, O., Schölkopf, B., Zien, A.: Introduction to semi-supervised learning. In:

Semi-Supervised Learning (Adaptive Computation and Machine Learning). (2006)
1–12

5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with Co-Training.
In: COLT ’98: Proceedings of the 11th Annual Conference on Computational
Learning Theory. (1998) 92–100

6. Balcan, M.F., Blum, A., Yang, K.: Co-Training and expansion: Towards bridging
theory and practice. In: NIPS ’04: Advances in Neural Information Processing
Systems 17. (2005) 89–96

7. Tan, C.M., Wang, Y.F., Lee, C.D.: The use of bigrams to enhance text categoriza-
tion. Information Processing and Management 38(4) (2002) 529–546

8. Caropreso, M.F., Matwin, S., Sebastiani, F.: A learner-independent evaluation of
the usefulness of statistical phrases for automated text categorization. In: Text
databases & document management: theory & practice. (2001) 78–102

9. Nigam, K., McCallum, A., Mitchell, T.: Semi-supervised text classification using
em. In: Semi-Supervised Learning (Adaptive Computation and Machine Learning).
(2006) 33–53

10. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of Co-
Training. In: CIKM ’00: Proceedings of the 9th International Conference on
Information and Knowledge Management. (2000) 86–93

11. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML ’99: Proceedings of the 16th International Conference on
Machine Learning. (1999) 200–209

12. Porter, M.F.: An algorithm for suffix stripping. Program: electronic library and
information systems 40(3) (2006) 211–218

13. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text
classification. Technical Report WS-98-05, Association for the Advancement
of Artificial Intelligence (1998) http://www.aaai.org/Papers/Workshops/1998/

WS-98-05/WS98-05-007.pdf.
14. Matsubara, E.T., Monard, M.C., Prati, R.C.: On the class distribution labelling

step sensitivity of Co-Training. In: IFIP AI ’06: Artificial Intelligence in Theory
and Practice. (2006) 199–208

15. Dias, G., Guillore, S., Bassano, J.C., Lopes, J.G.P.: Combining linguistics with
statistics for multiword term extraction: A fruitful association? (2000) 1473–1491

16. Pantel, P., Lin, D.: A statistical corpus-based term extractor. In: AI ’01: Proceed-
ings of the 14th Biennial Conference of the Canadian Society on Computational
Studies of Intelligence. (2001) 36–46

