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Abstract. In the real word, the environment is often dynamic instead
of stable. Usually the underlying data of a problem changes with time,
which enhances the difficulties when learning a model from data. In this
paper, different methods capable to detect changes from high-speed time
changing data streams are compared. These methods are appropriated
to be embedded inside learning models, allowing the adaptation to a
non-stationary problem. The experimental evaluation considers different
types of concept drift and data streams with different properties. As-
sessing measures such as: false alarm rates, number of samples until a
change is detected and miss detections rates, a comparison between the
algorithms’ capability of consistent detection is given. The choice on the
best detection algorithm relies on a trade-off between the rate of false
alarms and miss detections and the delay time until detection.

Key words: change detection, data streams, machine learning, moni-
toring data distribution.

1 Introduction: Motivation and Challenges

The most recent developments in Science and Information Technology lead to
the considerably growing of the computational capacity of small devices, which
are capable to produce a large massive amount of information at a high-speed
rate. Along with this, as data flows over time for large periods of time, the
process generating data is not strictly stationary and evolves over time.

The motivation for studying time-changing high-speed data streams comes
from the emergence of temporal applications such as signal processing, time series
analysis, sensor networks, automatic control, real time-monitoring in biomedicine
and industrial processes, fraud detection, user modelling, safety of complex sys-
tems and many others.

Due to the dynamic nature of data, some properties of the problem can
change over time, namely the target concept on which data is obtained may
shift from time to time, each time after some minimum of permanence. Learning
algorithms that model time-changing underlying processes must be able to track
the dynamic behaviour and adapt the decision model accordingly. For example,
in a prediction task, it is reasonable to assume that a change in the underlying



354 R. Sebastião, J. Gama

data distribution will increase the error rate thus making the predictions reflect
characteristics that are no longer hold. Since old observations (reflecting the
behaviour of nature in the past) became irrelevant to the current state, after the
occurrence of a change the prediction model need to be retrained to accurately
predict the underlying actual data. These dynamic processes are challenging and
need to be addressed with appropriated drift detection algorithms.

The nature of change is another important and challenging issue. Changes
may occur due to modifications in the context of learning (caused by changes in
hidden variables) or in the intrinsic properties of the observed variables. Usually,
literature considers two types of drift. The term Concept Shift refers to abrupt
changes (for example, the patterns of costumers’ buying preferences that may
change with seasons), while the term Concept Drift is associated to gradual
changes in the target concept (for example, small faults in parts of an industrial
process can modify the quality of the product). Concept Drift is more difficult
to detect, and at least in the initial phases it may be confused with noise.

The main challenge of algorithms for change detection is the combination
of robustness to noise with sensibility to concept change. Noise and outliers
pose difficulties and challenges to drift detection algorithms, and may increase
false alarm rates. The scope of this paper is the study of different methods for
drift detection, comparing their capacities under different types of concept drift,
different data streams’ lengths and different scenarios.

The paper is organized as follows: next section presents the related work
in the field of change detection in data streams; section 3 presents the drift
detection algorithms analyzed; section 4 describes the experimental evaluation
and conclusions are presented in the last section.

2 The Change Detection Problem in Data Streams

When monitoring a stream it is fundamental to know if the received data comes
from the distribution observed so far. Suppose a supervised learning problem,
where the data consists of sequences of pairs (

→
xi, yi) where yi ∈ C1, C2, ..., Ck. At

each time stamp t, the task of the learner is to output the class prediction ŷt of
that example. After checking the class yt the error of the algorithm is computed.
According with the Probability Approximately Correct (PAC) learning model [1]
if the distribution of examples is stationary, the error rate of the learning model
will decrease when the number of examples increases. A significant increase in
the error rate suggests a change in the process generating data. For large periods
of time, it is reasonable to assume that the process generating data will evolve.
Whenever new concepts replace old ones, the old observations become irrelevant
and thus the model will become inaccurate. In such case, the learning model
must be adapted in accordance with the current state of the phenomena under
observation.

Assuming that examples are independent and generated at random according
to an unknown distribution, to assess if a concept is shifting over time, it is
necessary to perform tests in order to determine if there is a change in the



A Study on Change Detection Methods 355

generating distribution. The null hypothesis is that the previously seen values
and the current observed ones come from the same distribution. The alternative
hypothesis is that they are generated from different distributions. Furthermore,
such kind of change detection tests should detect only true changes with high
probability, establishing a trade-off between false negatives and false positives.
Specifically, these algorithms should:

– Be able to detect and react to drift.
– Not exhibit miss detections.
– Be resilience to false alarms (detect a change in stationary environments).
– Require few examples to detect a change after the occurrence of one.

2.1 Related Work

Since our environment is naturally dynamic, learning form high-speed time
changing data streams is a considerably growing research field and several meth-
ods capable of dealing with concept drifts have been proposed [2–6, 11]. In gen-
eral, approaches to cope with concept drift can be classified into two categories:
(i) approaches that adapt a learner at regular intervals without considering
whether changes have really occurred;(ii) approaches that first detect concept
changes and afterwards the learner is adapted to these changes.

In the first approach, drifting concepts are often handled by time windows
or weighted examples according to their age or utility. Weighted examples are
based on the simple idea that the importance of an example should decrease
with time (references about this approach can be found in [8–10]). When a
time window is used, at each time step the learner is induced only from the
examples that are included in the window. Here, the key difficulty is how to select
the appropriate window’s size: a small window can assure a fast adaptability
in phases with concept changes. But in more stable phases it can affect the
learner performance. On the other end, a large window would produce good
and stable learning results in stable phases but can not react quickly to concept
changes. In later approaches with the aim of detecting concept changes, some
indicators (e.g. performance measures, data distribution, properties of the data,
etc.) are monitored over time. A typical example is to monitor the evolution of
a statistical function between two distributions: from past data in a reference
window and in a current window of the most recent data points [2, 5]. If during
the monitoring process a concept drift is detected, some actions to adapt the
learner to these changes can be taken. When a time window of adaptive size is
used these actions usually lead to adjusting the window’s size according to the
extent of concept drift [7]. As a general rule, if a concept drift is detected the
window’s size decreases; otherwise the window’s size increases [2].

3 Change Detection Algorithms

This paper performs a comparison between four known algorithms taken from
literature: the Statistical Process Control (SPC) presented in [3], the ADapta-
tive WINDdowing (ADWIN) method introduced in [11], the Fixed Cumulative
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Windows Model (FCWM), presented at [2] and a standard algorithm for change
detection, the Page-Hinkley Test (PHT) [13].

3.1 Statistical Process Control (SPC)

This drift detection method controls online the trace of the probability of error
for streaming observations. While monitoring the error, it defines a warning and
a drift level. When the error exceeds the first (lower) threshold, the system enters
in a warning mode and stores the time, tw, of the corresponding observation.
If the error drops below the threshold again, the warning mode is cancelled.
However, if in a sequence of examples, the error increases reaching the second
(higher) threshold at time td, a change in the distribution of the examples is
declared. The classifier is retrained using only the examples since tw and the
warning and drift levels are reset.

Pseudo-code

Input:
labeled dataset x1, . . . , xt

warning threshold tw (default tw = 2)
detection threshold td (default td = 3)
warm-up window size w0 (default w0 = 30)

1. Initialize the minimum classification error pmin =∞ and the
corresponding standard deviation smin =∞. Set the warning zone
flag, fw, to false and w1 =0.
2. For j = 1 to t - 1 (all the observations)

If j < w0 then
wj+1 = wj + 1 (warm up, only grow the window)

Else
i. Train a classifier on the current window of size wj.
ii. Classify observation wj+1.
iii. Update the error rate over the current window.

Let p̂ be the updated error rate and ŝ = p̂(1−p̂)
wj

be the

updated standard deviation.
iv. If (p̂+ ŝ) < (pmin + smin) then update the minimum error

by pmin = p̂ and smin = ŝ.
v. If (p̂+ ŝ) > (pmin + td × smin) and fw = true

change has been detected, set up the
detection time td = j.
Take as the new training and detection window all
the observations since tw (size wj+1 = j − tw + 1),
set pmin =∞, smin =∞ and tw =∞.

ElseIf (p̂+ ŝ) > (pmin + tw × smin)
If fw = false
switch the warning zone flag fw = true and set up
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the warning time tw = j.
Else

set fw = false and update the window by adding
xj+1 to it (size wj+1 = wj + 1).

3. Set DTSPC = tw.

Output: detection time DTSPC.

3.2 ADaptive WINdowing (ADWIN)

The ADaptative WINDdowing method keeps a sliding window W (with length
n) with the most recently received examples and compares the distribution on
two sub-windows of W . Whenever two large enough sub-windows, W0 and W1,
exhibit distinct enough averages, the older sub-window is dropped and a change
in the distribution of examples is assigned. The window cut threshold is com-
puted as follows:

εcut =
√

1
2m ln

4
D , with m = 1

1/n0+1/n1
, where n0 and n1 denote the lengths

of W0 and W1.
A confidence value D is used within the algorithm, which establishes a bound

on the false positive rate. However, as this first version was computationally
expensive, the authors propose to use a data structure (a variation of exponential
histograms), where the information on the number of 1’s is kept as a series of
buckets (in the Boolean case). It keeps at most M buckets of each size 2i, where
M is a design user-defined parameter. For each bucket, two (integer) elements
are recorded: capacity and content (size or the number of 1s it contains). The
method is detailed in [11].
Pseudo-code

Input:
labeled dataset x1, . . . , xt

confidence value D ∈ (0, 1)
bucket’s parameter M

1. Initialize W as an empty list of buckets
2. Initialize εcut

3. for each t > 0
do SetInput(Xt, W)

Output uW and ChangeAlarme

SetInput (item e, List W)
1. InsertElement(e, W)
2. repeat DeleteElement(W)

until |uW0 − uW1 | < εcut holds
for every split of W into W = W0 ·W1

InsertElement (item e, List W)
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1. Create a new bucket b with content e and capacity 1
2. W ←W ∪ b (add e to the head of W)
3. Update εcut

4. CompressBuckets(W)

DeleteElement(List W)
1. Remove a bucket from the tail of list W
2. Update εcut

3. ChangeAlarm← true

CompressBuckets(List W)
1. Transverse the list of buckets in increasing order

do If there are more than M buckets of the same capacity
do merge buckets

CompressBuckets(sublist of W not transversed)

3.3 Fixed Cumulative Windows Model (FCWM)

In a previous work [2] the FCWM was presented as a method to detect changes
in data streams. To summarize data, it first constructs histograms using the
two layer structure of the Partition Incremental Discretization (PiD) algorithm,
which was designed to learn histograms from high-speed data streams [12]. The
change detection problem is addressed by monitoring distributions in two differ-
ent time windows: a reference window (RW), reflecting the distribution observed
in the past; and a current window (CW) which receives the most recent data. In
order to assess drifts, both distributions are compared using the Kullback-Leibler
divergence (KLD), defining a threshold for change detection decision based on
the asymmetry of this measure.
Pseudo-code

Input:
labeled dataset x1, . . . , xt

number of bins nBins
number of observations in the current window InitialObs
evaluation interval EvalInterval
drift threshold λ

1. for t > 0
1.1 If t > InitialObs then

Compute the probability distribution p for the RW
else

Compute the probability distribution q for the CW
From EvalInterval to EvalInterval compute

A = |KLD(p||q)−KLD(q||p)|
If A > λ⇒ a drift is detected
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Return and report a change at time tFCWM

else
Return to 1.1

Output: detection time tFCWM.

3.4 Page Hinkley Test (PHT)

The Page-Hinkley test (PHT) is a sequential analysis technique typically used
for monitoring change detection [13]. It allows efficient detection of changes in
the normal behaviour of a process which is established by a model. The PHT was
designed to detect a change in the average of a Gaussian signal [14]. This test
considers a cumulative variable UT defined as the cumulated difference between
the observed values and their mean till the current moment:

UT =
T∑

t=1

(xt − x̄T − δ)

where x̄T = 1/T
∑t

t=1 xt and δ corresponds to the magnitude of changes that
are allowed. To detect increases, it computes the minimum value of Ut: mT =
min(Ut, t = 1 . . . T ) and monitors the difference between UT and mT : PHT =
UT−mT . When the difference PHT is greater than a given threshold (λ) a change
in the distribution is assigned. The threshold λ depends on the admissible false
alarm rate. Increasing λ will entail fewer false alarms, but might miss or delay
some changes. Controlling this detection threshold parameter makes it possible
to establish a trade-off between the false alarms and the miss detections.
Pseudo-code

Input:
labeled dataset x1, . . . , xt

magnitude threshold δ
detection threshold λ

1. for t > 0
1.1 Computes

x̄T = 1/T
∑t

t=1 xt

UT =
∑T

t=1(xt − x̄T − δ)
mT = min(Ut, t = 1 . . . T )

If PHT = UT −mT > λ
return and report a change at time tPH

else
return to 1.1

Output: detection time tPH.



360 R. Sebastião, J. Gama

4 Experimental Evaluations

This section describes the evaluation of the mentioned methods. To assess the
performance of change detection algorithms under different scenarios, different
kinds of experiments with distinct purposes were implemented. The rate of false
alarms, miss detections and delay time until detection were evaluated using:
(i) data underlying a Bernoulli distribution, (ii) artificial datasets with distinct
characteristics and (iii) a public dataset.

4.1 Artificial Data

The first set of experiments uses data streams of lengths L = 2.000, 5.000 and
10.000, underlying a stationary Bernoulli distribution of parameter µ = 0.2 dur-
ing the first L−1.000 observations. During the last 1.000 samples the parameter
is linearly increased using different slopes: 0(no change), 10−4, 2.10−4, 3.10−4

and 4.10−4. These experiments also allow analyzing the influence (in the delay
time until detections) of the length of the stationary part (the first L − 1.000
samples).

Table 1. Mean delay time until drift detection (DT ), false alarms rates (FA) and the
miss detections rates (MD), for the four methods, using the data streams with lengths
2.000, 5.000 and 10.000 and with different slopes in the Bernoulli parameter distribu-
tion. For slope = 0 (no change) the measurements DT and MD are not applicable.

Length Slope
ADWIN SPC FCWM PHT

DT FA MD DT FA MD DT FA MD DT FA MD

2.000

0 (n.a.) 0.05 (n.a.) (n.a.) 0 (n.a.) (n.a.) 0.02 (n.a.) (n.a.) 0.04 (n.a.)
1.10−4 581.6 0 0.03 626.6 0 0.02 853.8 0 0.37 573.0 0 0.03
2.10−4 577.6 0 0 687.2 0 0.16 894.8 0 0.59 522.9 0 0
3.10−4 428.4 0 0 536.9 0 0 647.0 0 0 397.3 0 0
4.10−4 358.6 0 0 534.4 0 0 616.3 0 0 331.3 0 0

5.000

0 (n.a.) 0.17 (n.a.) (n.a.) 0.17 (n.a.) (n.a.) 0.35 (n.a.) (n.a.) 0.41 (n.a.)
1.10−4 721.9 0.16 0.30 866.4 0.21 0.77 705.5 0.27 0.64 649.6 0.23 0.13
2.10−4 512.0 0.12 0.13 732.3 0.19 0.37 674.7 0.18 0.14 462.9 0.25 0
3.10−4 382.6 0.14 0.14 667.9 0.20 0.17 572.8 0.31 0.04 337.0 0.32 0
4.10−4 320.1 0.10 0.10 587.1 0.09 0.12 501.8 0.35 0.06 279.2 0.29 0

10.000

0 (n.a.) 0.15 (n.a.) (n.a.) 0.44 (n.a.) (n.a.) 0.22 (n.a.) (n.a.) 0.68 (n.a.)
1.10−4 721.6 0.19 0.35 829.3 0.39 0.94 723.7 0.27 0.69 649.6 0.60 0.10
2.10−4 505.0 0.19 0.19 842.7 0.56 0.57 687.4 0.31 0.36 466.0 0.71 0
3.10−4 401.3 0.17 0.17 719.5 0.29 0.53 597.4 0.29 0.29 343.9 0.68 0
4.10−4 327.2 0.23 0.23 642.2 0.52 0.42 481.0 0.24 0.24 280.2 0.66 0

As it is presented in table 1, rows are indexed by the value of L and corre-
sponding slope. So, these rows present the delay time (DT ) until the detection of
the change that occurs at time stamp L−1.000 (averaged over all runs), the miss
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detections rates (MD) and the false alarms rates (FA) for each algorithm stud-
ied. In general, the increase of the number of samples leads to an increase of the
number of false alarms and miss detections. It can also be observed that as the
number of samples increases, the percentage of changes detected decreases (with
exception of the Page Hinkley Test). As it is reasonable, for all the algorithms,
the increase on the slope of the Bernoulli’s parameter contributes to a decrease
of the time until the change is detected. As a final remark, the PHT maintains
a good rate of miss detections, independent of the number of stationary past
samples. This method presents smaller mean delay times, however these results
are compromised with false alarms.

In the following set of experiments were used the following artificial datasets
previously used in concept drift detection [15]:

– SINE1: Abrupt concept drift, noise-free examples.
– SINIRREL1 Abrupt concept drift, noise-free examples, presence of irrele-

vant attributes (the same classification function of SINE1 but the examples
have two more random attributes with no influence on the classification
function).

– CIRCLES: Gradual concept drift, noise-free examples.
– GAUSS: Abrupt concept drift, noisy examples.

These artificial datasets have several different characteristics that allow assess-
ing the methods’ performance in various conditions: abrupt and gradual drift,
presence and absence of noise and presence of irrelevant attributes. All the prob-
lems have two classes and each class is represented by 50% of the examples in
each context. To ensure a stable learning environment within each context, the
positive and negative examples in the training set are alternated. The number
of examples in each concept is 1.000. To compute the error rate in these classifi-
cation problems, the detection algorithms were embedded inside a decision tree
classifier. Figure 1 presents the mean delay time for the four methods. In spite
of the smaller delay for PHT, this method closely competes with ADWIN and
SPC. On the other extreme, FCWM exhibits the highest delays. With exception
of the ADWIN that presents a false alarm when using the SINE1 dataset, in all
of the other cases there are no false alarms to report.

Fig. 1. Mean delay time until drift detection (DT ) for the four methods, using the
datasets SINE1, SINEIRREL1, GAUSS and CIRCLES.
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4.2 Evaluation on a Public Dataset

In the previous experiments, the datasets did not allow checking the algorithms’
performance in large problems, which is important since concept drift mostly
occurs in huge amounts of data arriving in the form of stream. To overcome this
drawback, an evaluation of the change detection algorithms was performed using
the dataset SEA concepts [16], a benchmark problem for concept drift. Figure 2
shows the error rate (computed using a naive-Bayes classifier), which presents
three drifts. The drifts and the corresponding detections are also represented by
vertical lines. Table 2 presents the delay time in detection of concept drifts in
this dataset (where the number of false alarms is indicated in parenthesis). One
can observe that all the algorithms require too much examples to detect the first
drift. However, with the ADWIN, the FCWM and PHT, the others are detected
within a reasonable delay time. The resilience to false alarms and the ability to
reveal changes without miss detections must be stressed out.

Table 2. Delay time in three drift scenarios using different change detection methods.
The number of false alarms is indicated in parenthesis.

#Drift
Delay Time

ADWIN SPC FCWM PHT
1 826 3314 817 1404
2 115 607 273 118
3 242 489 249 (1) 256

5 Conclusions and Further Research

Regarding the delay time until detection and the miss detections, the Page Hink-
ley Test and the ADaptive WINdowing revealed to be the more appropriated
algorithms to detect changes in the evaluated drift scenarios. However, in the first
set of experiments the PHT presents a high rate of false alarms. Nevertheless,
since learning algorithms run in fixed memory, time and memory consumption
are also important constrains. It should be pointed out that PHT and Statistical
Process Control are less time and memory consuming than the ADWIN and the
Fixed Cumulative Windows Model, since they do not require any data structure
to evaluate drifts.
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Fig. 2. Evolution of the error rate and the delay times in drift detection using the
four presented methods. Vertical dashed lines indicate drift in data, and vertical lines
indicate when drift was detected.
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