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Abstract. The popularity of computer networks broadens the scope for
network attackers and increases the damage these attacks can cause. In
this context, any complete security package includes a network Intru-
sion Detection System (nIDS). This work focuses on nIDSs which work
by scanning the network traffic. We present a service-independent pay-
load processing approach, based on histogram representation, to increase
detection rates in non-flood attacks. We implemented three different op-
tions combining histogram representation and fixed width clustering al-
gorithm for anomaly detection, and compared them to a sysstem based
on packets’ header information, another system based on ad hoc payload
processing and our previous general payload processing proposal. The
new options outperformed the previous ones; they detected efficiently
most of the attack types. Moreover, the proper integration of the knowl-
edge of the different techniques, payload-based and packet header-based,
always improved the results. This work leads us to conclude that payload
analysis can be used in a general manner, with no service- or port-specific
modelling, to detect attacks in network traffic.

Key words: Intrusion detection systems, unsupervised anomaly detec-
tion, payload, histogram, AUC

1 Introduction

There has been a huge increase in the use of computer networks. This fact
broadens the scope for network attackers and increases the damage these at-
tacks can cause. Network attacks affect the security of the information stored
on computers connected to the network and its stability. Therefore, it is very
important to build systems that are able to detect attacks before they cause
damage. Any complete security package includes a network Intrusion Detection
System (nIDS).

The detection of network attacks can be done by human analysis or auto-
matically. The detection by human analysis requires memorisation, looking up
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description libraries or searching sample collections and it is not effective; it is
too time consuming and subjective. As a consequence, in order to successfully
confront the problem, the security systems require automated and robust nIDSs.
In this sense, a very popular option is the use of data mining techniques, mainly
trained on labelled data, to detect attacks. We can find in bibliography three
main approaches for nIDSs. The first two are misuse detection approach [11] and
anomaly detection approach [26]. Due to the problems the previous approaches
have, a third one appeared: unsupervised anomaly detection [18]. Usually the
best option is a combination of some intrusion detection systems. For example,
a flood detecting firewall could first filter most flood attacks; a signature-based
IDS could then be used to remove the known attacks and unsupervised anomaly
detection could finally focus on detecting the unknown attacks.

The characteristics of the attacks change depending on the kind of attack and
as a consequence, the suitability of a tool to detect them will also change. Most of
the flood attacks can be successfully detected by scanning the TCP/IP headers
of network packets but this information is not enough to detect most of the non-
flood attacks. It is nearly impossible for systems to use traffic models to detect
User to Root (U2R) or Remote to Local (R2L) attacks because the intruder
only has to send very few packets (often, a single one is enough). R2L and U2R
attacks can lead to catastrophic consequences because they are actually the only
ones that allow the intruder to obtain complete control of the attacked system. In
this context some authors propose the use of another source of information: the
transferred information or payload. The features of the payload vary depending
on the kind of network connection and service. As a consequence, most payload
based IDSs we can find in bibliography are service-specific [10][25][12]. These
service-specific methods are very context dependent. That is to say, as they
are moved to machines offering different services or as new services appear, the
system will need to be rebuilt. In this context it would be important to be able
to build a system that is able to work in any environment independently of the
kind of services or machines.

The aim of our work is to contribute to build efficient and context indepen-
dent nIDSs. In a previous study [17] we proved that information obtained from
general payload processing is useful to detect non flood network attacks in an
unsupervised anomaly detection context. But we wanted to go further and the
purpose of this work was to answer the following questions. Can general payload
processing be more efficient than some specific payload processing for intrusion
detection in an unsupervised anomaly detection context? and can this be done
in a computationally efficient way?

To answer to our research questions we processed the payloads as byte his-
tograms and used histogram comparison methods [20] to compare different pay-
loads. We used clustering as anomaly detection technique and compared the re-
sults achieved with our system, general payload processing, to the ones achieved
with specific payload processing. Based on previous experience, we combined
results obtained from payload analysis with the results obtained from packet
header analysis. The results showed that representing the payload as byte his-
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tograms and using histogram comparison methods as distances for clustering
builds efficient anomaly detection systems for network attack detection. Fur-
thermore, they can be used to complement techniques based on packet header
analysis, since the combinations tried always improved the results.

The paper proceeds to describe in Section 2 the main automatic approaches
used to build IDSs. In Section 3 we describe the approximation we used in this
work for outlier detection. Section 4 is devoted to describing the histogram signa-
ture based approach we used to process payload without any context knowledge.
In Section 5 we present the schema of the proposed system. The paper contin-
ues in Section 6 where we describe the data used in the experimentation and
we present experimental results in Section 7. Before the conclusions Section 8 is
devoted to a short discussion. Finally, we summarise in Section 9 the conclusions
and further work.

2 Main approaches for IDS

We found in bibliography three main data mining based approaches for intru-
sion detection: misuse detection, anomaly detection and unsupervised anomaly
detection. In the misuse detection approach, which is used in systems such as
MADAM/ID [11] the authors use machine learning techniques on labelled data:
the classifier learns from a set of labelled connections, where there is normal
traffic and attacks, and in subsequent uses it recognises known attacks. These
methods have two main problems. On the one hand, it is very difficult to obtain
completely labelled network traffic and, on the other hand, they can not solve
the zero-day problem and as a consequence, the new attacks will always succeed
in damaging the system. They need to be revised each time a new kind of in-
trusion appears and this happens every day. Nevertheless, the primary objective
will be to detect the first occurrence of intrusions and prevent it from damaging
any victim.

Warrender, Forrest and Pearlmutter wrote a survey [26] of IDSs based on
anomaly detection approaches. This method profiles normal network traffic be-
haviour and successfully detects attacks when the observed traffic deviates from
the modelled behaviour. In anomaly detection approach, classifiers learn how
normal traffic behaves and any anomalous connection is considered to be an
attack. As a consequence, if the engineers do not model all the kinds of normal
traffic, the systems will have high false positive rates. Moreover, in real environ-
ments it is not usual to have purely normal data and these approaches need it
in order to model just normal traffic. If any attack is left in the hypothetical
purely normal data, this attack will be learnt as normal traffic and the IDS will
never produce an alert related to it.

Due to the problems the previous approaches have, many researchers are
working on a third one: unsupervised anomaly detection [18]. It does not need
purely normal data and it uses unlabelled data, which is easy to obtain. This
option works under the assumption that the volume of normal traffic is much
greater than the traffic containing attacks, and, furthermore, the intrusions’ be-
haviour is different from normal data’s” behaviour. Under these assumptions the
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intrusion detection problem can be confronted using outlier detection techniques.
This approach can be used as a stand-alone system, or, even more effectively, it
can be combined with a misuse detection or anomaly detection process.

Unsupervised anomaly detection methods are inadequate for detecting flood
attacks because these kinds of attacks usually need to send a large number of
packets in a short time and as a consequence they will naturally form large
groups that will not be detected as anomalies. Nevertheless, flood attacks are
easy to detect and some authors achieve high detection rates by simpler systems
that scan network traffic or analyse headers [15]. Although it is long since the
fist anomaly detection approaches appeared, it is still a successful approach
being used in many systems. An example of the use of this methodology is
the number of papers mentioning it in the last conference in Recent Advances
in Intrusion Detection RAID 2008. Ashfaq et al [1] for example presented a
comparative evaluation of 8 lately developed anomaly detectors under portscan
attacks from the accuracy, scalability, complexity and detection delay point of
view. The authors built two independently collected datasets for the evaluation,
both of them including packet header information since all the evaluated systems
are based on this information. On the other hand, Dagorn presents in [2] an
anomaly-based intrusion detection system for web applications and Rehédk eta
al [19] present a way to improve error rate in anomaly detection by collective
trust modelling.

3 Detecting outliers

As we mentioned in previous section, unsupervised anomaly detection strategies
can be formulated as outlier detection problems [6]; they usually build prob-
abilistic models of the data that will help them to decide whether or not the
connections are attacks. We concretely used clustering as a tool for anomaly
detection. We first performed the clustering over the points in the feature space,
the connections, and assigned a score to each cluster based on its size. Then we
scored the examples in each cluster based on this score, and we used this score to
determine the degree of anomality of the example. We labelled the points with
lower scores as anomalous. Although many clustering algorithms could be used,
based on the experience of other authors [4][13], we selected the fixed-width clus-
tering algorithm [4], also known as the leader algorithm [21]. The fixed-width
scales linearly to the number of examples of the database and the number of
clusters. This algorithm does not accurately fit to databases with clusters of
different sizes; it over partitions the largest clusters. Nevertheless, in the unsu-
pervised anomaly detection context we are interested just in the small clusters,
so this drawback of the algorithm is not a real problem.

4 Payload processing

TCP/IP headers of the packets detected on the network traffic can be easily
processed because the format of these headers is well-known. On the contrary,
payload processing is a difficult task because its format in a packet depends on
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the application and used protocol. Moreover, many protocols have fields where
any kind of data can be stored. Some authors solved this problem by performing
the data processing in a specific way for each service [10][25][11]. This option has
many drawbacks: it works for a reduced set of connections, the used protocol is
not always known and new services are not automatically treated. The selected
payload processing method needs to be helpful to detect attacks, but, it also
requires having some other characteristics such as:

1. Not requiring human intervention. That is, to be automatic.

2. To be service-independent, and, as a consequence, usable in different envi-
ronments and adaptable to changing situations. That is, to be general.

3. To be computationally efficient.

It is not easy to build a system with all the required skills; it seems, on the
one hand, that more complex or computationally expensive systems would better
model the payload. On the contrary, payload data can generally be seen as a
sequence of bytes, so in a previous work [17] we already processed it regardless of
the kind of service or port, based on byte frequencies and sequence comparison
techniques. In this work we processed the payload in a very simple and efficient
way: as byte histograms or 1-grams. We represented the ASCII characters (0-255
bins) in the x-axis and their frequencies, normalised with the payloads’ length,
in the y-axis.

Histogram comparison methods

Histogram comparison is an important field in pattern classification and data
clustering. As a consequence there are many approaches to calculate distances
or similarities between histograms. Some approaches propose distances for or-
dered histograms. Strelkov presented in [22] for example a distance based on
the closeness of positions and shapes of peaks in the compared histograms. This
peak matching measure mainly moves one histogram relatively to another in
its inner compute. This kind of distance requires ordered histograms, i.e., the
neighbour bins on a histogram need to contain related information. In our case,
the histograms are nominal. When processing payload the bins correspond to
ASCII characters which are independent from each other. We based our re-
search mainly in the work of Serratosa and Sanfeliu [20]. They propose the use
of signatures, a loss-less representation of histograms, to calculate distances be-
tween histograms in an efficient way. The signature is a vector that contains
the non-zero bins of the corresponding histogram and x-axis indexes for the
saved bins. Thus, the signature does not lose information. For each payload
(P;) corresponding to each of the network connetcions we built an histogram
H(P) = [H1(P),..., Hr(P;)] where T is the amount of different discrete val-
ues, 256 in our case, and, H;(P;),1 <= i <= T are bins (frequency of the
byte i in the payload P;). Let S = [S1(P),...,S.(P;)] be the signature of the
set P,. Each Si(P)),1 <= k <= z <= T, is composed of a pair of terms,
Sk(P;) = {wg, my}. The first term,wy, shows the relation between the signa-
ture S(P;) and the histogram H(F;). Thus, if wy = i then the second term,
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my, = H;(P;) where my > 0. To compute the distance between two signatures
they need to have the same length. The authors propose the use of extended
signatures: a signature with the minimum number of empty bins added so that,
given a pair of signatures to be compared, the number of bins is the same in
both of them. Moreover, each bin in both signatures represents the same bin
in the histograms. Once we got the extended signatures we computed the dis-
tance between two histograms using Euclidean distance, or using the nominal,
Manhattan, or the ordinal, Landmover, distances proposed in [20].

1. The Manhattan distance between two histograms is the number of elements
that do not overlap.

Daom(S(A), 8(B) = 3 [mi¥" = mf
i=1

2. The Landmover distance between histograms is the minimum number of
unit-bin movements needed to transform one histogram to the other. This
distance takes into account the sky-line of histograms and can be seen as a
way of comparing smoothed histograms [23][8].

Dora(S(A'), S(B")) = Xi  (wity — wi) [ X0, (mf — m¥)

5 Schema of Intrusion detection process

For clarity, in this section we summarise the steps of the payload based intrusion
detection tool we propose. Figure 5 shows a schema of the process. Once net-
work data is collected we divide it in two main parts: the connections headers’
information on the one hand, and the transferred information or payload on the
other one. We processed the TCP/IP headers information to obtain a tabular
representation with intrinsic variables and traffic variables and obtained byte
histograms from the payload part. In next step we applied fixed width cluster-
ing algorithm to both parts: combined with Euclidean distance for the headers
information and combined with the histogram based distances defined in Section
4 for payload. The output of each clustering process was a different partition.
Finally, we combined the scores and obtained the final value for each connection.
These scores will be the ones used to determine the degree of anomality of the
connection.

6 Data generation

It is difficult to obtain labelled data or a database with purely normal data for
network traffic. This makes difficult the evaluation and comparison of results
of intrusion detection systems; unsupervised anomaly detection techniques do
not require labelled data to work, but they need it so that the system can be
evaluated. We wanted to generate comparable results and we decided to use
some standard data such as Kddcup99 from the UCI repository [9]. Kddcup99
was built from the DARPA98 dataset [3], which was generated by the Infor-
mation System Technology Group (IST) of the Lincoln Laboratory of the MIT
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Fig. 1. Schema of the proposed Intrusion Detection System

with the collaboration of DARPA and ARFL. They built a network to simulate
a real situation of network traffic containing normal traffic and attacks. They
used Tcpdump [7] to sniff the network and stored all the packets belonging
to network traffic in a tcpdump file. Lee generated the UCI format Kddcup99
database identifying connections and aggregating information belonging to them.
Each connection has three kinds of features: intrinsic variables (those obtained
by examining the packets’” TCP/IP structure such as protocol, length, urgent
bit); traffic variables which take into account header information of preceding
connections contained in a window of some specific size; and, finally, content
variables obtained by examining the payload of some particular services, such
as number of failed logins, number of file creations, etc.. KddCup99 database
processes a huge amount of information from DARPA98 dataset and stores it in
a format suitable for most machine learning algorithms, but, it does not store
the original payload information. The only payload based information it keeps
is in the content variables. This is obviously not a general solution.

We reprocessed the DARPA98 database, based on Lee 1999 and using Bro
[16], to add information from the original DARPA9S8 to Kddcup99 database. In
this new database, each connection will have the intrinsic and traffic variables
of Kddcup99 added to all the payload data corresponding to it. The aim of this
work was to replace the information the content variables provide by automatic
payload processing.

Due to the huge size of the original Kddcup99 database (about 5,000,000
connections), most authors performed their experiments using a sample of the
original dataset. This sample contains about the 10% of the connections. Sim-
ilarly, we extracted a stratified sample of about 10% of the size of the original
one. Since our goal is to find the non-flood attacks, and the DARPA9S is over-
loaded with flood attacks, we filtered all the flood attacks in the dataset. Thus,
we worked with a database of 178,810 examples, where 3,937 examples belong
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to intrusions of 27 different kinds. We show in the first two columns in Table 1
the information about the kind of attacks and their frequency.

7 Experimental results

In a previous work [17] we proved that the payload on its own could be used to
detect intrusions. In this work we evaluated the performance of the histogram-
based payload representation and the three distances described in Section 4.
As first approximation we used just the payload information to build classifiers
based on the methodology described in Section 3. We built models of the system
using fixed-width algorithm for 7 different options:

1. The specific content variables defined in Kddcup99 (C).
2. Three options experimented in our previous work [17].

— Payload treated as sequence of bytes and compared with NCD distance
[14](NCD).

— Payload represented with the 30 most frequent bytes. We treated each
byte as independent variable and used Hamming distance to compare
payloads. We called this option MFN (Most Frequent Nominal).

— Payload represented with the 30 most frequent bytes and considering it
a sequence where the position of each character influences the distance.
We called this option MFO (Most Frequent Ordinal).

3. Three options for comparing histograms described in Section 4

— Euclidean distance (HE).

— Manhattan distance (HM).

— Ordinal distance (HO).

We experimented with the whole database, that is, normal traffic data plus
data from 27 different kinds of attacks. We evaluated the results based on the
ROC curves and the Areas Under ROC Curves, or AUC values, obtained [5].
To compute the ROC of just a single attack type, we ignored the examples
belonging to other attack types. For each option we present detection rates of
each type of attack separately, minimum AUC achieved with each model and
weighted average —taking into account the number of attacks of each type— of
the achieved AUC. We also generated and included results obtained using just
intrinsic and traffic variables (IT) as baseline.

The rows in Table 1 belong to differend attack types whereas the columns
belong to different systems. The second column in Table 1 shows the number of
examples of each type of attack we find in the database, the third one shows AUC
values achieved using packet header information (IT) and, next seven columns
show the results achieved with each methodology based only in payload infor-
mation.

In general terms, the first conclusion that can be drawn from this processing is
that although no context knowledge is used and simple processing is performed,
the six options for modelling payload in a general way (NCD, MFN, MFN, HE,
HM, HO) are able to differentiate between normal traffic and intrusions and
besides, the three options we proposed in this work, HM, HE and HO, achieved
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the highest average AUC values, they did it even better than the model built
with data obtained using context specific knowledge for processing payload (C)
or the packets’ header information (IT). Besides, the row with minimum AUC
value for each option shows that mainly two of the options are more interesting:
HM and HO. They achieved AUC values of 0.69 or bigger for all the kinds of
attacks. The rest of the options have minimum values smaller than 0.5 which
means that for some kind of attack they achieved worse results than a random
classifier would.

Different techniques showed the ability to detect different kinds of attacks,
and based on previous experience, we knew that it is possible to integrate the
knowledge of the payload based techniques and the packet header based tech-
nique to improve the original results. Thus, we combined by averaging scores [17]
the results obtained with Intrinsic and Traffic variables (IT), with the results
obtained with Content variables on the one hand (IT+C), and, with results ob-
tained with HM and HO (IT+HM+HO) on the other hand; the best two options
of histogram processing. The combinations contributed to increase the overall
AUC values in both cases. The combination of IT, HM and HO is the one that
achieved the best results with average AUC of 0.955 and minimum AUC value
of 0.89.

8 Discussion

The experimentation presented in previous section proves that a general payload
processing methodology, histogram representation, is more efficient than the
specific payload processing done in Kddcup99 [12] for intrusion detection in
an unsupervised anomaly detection context. The proposed payload processsing
options were able to detect more attacks in both cases: when used on their
own and when combined with the information of intrinsic and traffic variables.
And besides, the proposed options are not computationally expensive since they
require simple mathematical operations.

The payload of different network connections can be very different. The trans-
ferred information usually depends on the kind of service, and, as a consequence
there are few works where the payload is used to model network traffic and de-
tect the possible intruders. When payload is used with this aim service-specific
approaches are developed. For example Kriigel Toth and Kirda [10] presented a
work that focuses on R2L attacks and uses service-specific knowledge to increase
the detection rate of intrusions. They implemented a prototype that can process
HTTP and DNS traffic although they only presented results for DNS. Wang,
and Stolfo [25] based their work on profile byte frequency distribution and they
computed the standard deviation of the application-level payload flowing to a
single host and port during a training phase. They used the Mahalanobis dis-
tance during the detection phase and if the distance exceeded a certain threshold
the system generated an alarm. This model is also host- and port-specific and
conditioned by the payload length. In a different context, Wazumi et al. in [24]
also processed the payload as byte histograms for early worm detection. But
they did a different work since, instead of concentrating in the reduction of false
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Table 1. Attack detection rates for different models

attacks IT C NCD MFN MFO HM HE HO [|[IT+C IT+HM+HO
anomaly 9 [|0.76]| 1 0.88 0.35 0.74 0.98 0.64 1 1 0.96
dict 879 |1 0.76 [|0.99 0.82 0.64 0.83 0.93 0.92 1 0.95 0.95
dict_simple 1 /065 1 0.81 0.69 0.83 0.98 0.99 1 1 0.96
eject 11 || 0.76 ||0.98 0.82 0.8 0.8 0.99 0.35 0.98 | 0.98 0.96
eject-fail 1 ]/0.99( 0.8 0.48 0.99 0.58 0.95 0.95 0.97 1 0.96
b 10 || 0.8 ||0.85 0.88 0.72 0.93 0.95 0.65 0.96 || 0.93 0.95
fib_clear 1 /065 1 0.81 0.71 0.67 0.99 0.97 0.96 1 0.95
format 6 [/0.791/0.75 0.93 0.81 0.95 0.93 0.82 0.96 || 0.89 0.93
format_clear 1 [[0.52|| 1 0.81 0.88 0.83 0.99 0.21 0.95 1 0.92
format-fail 1 /098 1 0.81 0.8 0.67 0.99 0.75 0.95 1 1
ftp-write 8 1/0.881/0.73 0.88 0.76 0.56 0.8 0.87 0.9 || 0.87 0.89
guest 50 || 0.77] 1 0.85 0.81 0.83 0.93 0.92 0.89 | 0.94 0.96
imap 7 0.9 [|0.8 0.97 0.97 0.68 0.97 0.86 0.89 || 0.92 0.94
land 35 110.921] 0.8 0.48 0.99 0.58 0.95 0.95 0.88] 0.94 0.94
load_clear 1 /065 1 0.81 0.12 0.14 0.93 0.99 0.87 1 0.92
loadmodule 8 0.7 |0.84 0.71 0.69 0.68 0.97 0.77 0.87| 0.87 0.89
multihop 9 1/0.721/0.74 0.78 0.63 0.71 0.93 0.94 0.84 | 0.83 0.98
perl_clear 1 /095 1 0.81 0.52 0.87 0.99 0.99 0.81 1 0.94
perlmagic 4 ]|0.66(| 1 0.83 0.86 0.86 0.99 0.99 0.77 1 0.96
phf 5 0.9 [|0.5 0.71 0.99 0.72 0.98 0.98 0.77| 0.88 0.93
rootkit 29 || 0.88 {|0.81 0.77 0.86 0.77 0.94 0.96 0.76 || 0.87 0.96
Spy 2 1/0.71]/0.8 0.81 0.66 0.52 099 1 0.76] 0.86 0.98
syslog 4 1/0.820.8 0.48 0.97 058 1 0.9 0.75| 0.85 0.94
teardrop 1085]| 0.82{|0.65 0.48 0.76 0.58 0.89 0.48 0.69 | 0.85 0.91
warez 1 ]/096(0.31 1 0.12 0.85 0.93 0.97 0.69 | 0.98 0.96
warezclient 1749]| 0.81 ||0.68 0.86 0.86 0.86 0.94 0.92 0.69 | 0.83 0.95
warezmaster 19 |/ 0.94 ||0.75 0.87 0.96 0.88 0.82 0.87 0.69 | 0.96 0.95
min 0.52 {|0.31 0.48 0.12 0.14 0.8 0.21 0.69 | 0.83 0.89
Average 0.845|(0.80 0.746 0.631 0.765 0.929 0.918 0.854|| 0.91 0.955

positives, and as a consequence the AUC in a network, they proposed a pay-
load processing methodology to detect worms in different networks; they only
experimented with a worm, Beagle_AV. Another example of payload processing
can be found in the content variables of Kddcup99 [12]. In this case, the author
obtained some information from the payload based on the experts’ experience.
This kind of processing is very context dependent and it can only be done for
some well known services and protocols. The processing is totally static; it has
no learning capability at all. In order for it to be adapted to new situations the
experts need to manually analyse the network data and adapt their knowledge to
new attacks. We presented in a previous work in nIDSs [17] three different tech-
niques for payload processing. The three options were able to efficiently detect
some of the attack types. This work showed that general payload analysis can
be effective but the best results were always achieved including NCD sequence
comparison method [14] for payload processing. The present work improves it in
two senses:
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— Any of the histogram based payload processing strategies achieved greater
AUC values than NCD, MFN or MFO options. They even outperformed the
results achieved with specific payload processing, Content variables obtained
adhoc for the Kddcup99 database based on experts’ experience.

— The new option is computationally cheaper

9 Conclusions and further work

The experimentation presented in this paper proves that a general payload pro-
cessing methodology, histogram representation, is more efficient than the spe-
cific payload processing done in Kddcup99 for intrusion detection in an unsu-
pervised anomaly detection context. The proposed payload processing options
were able to detect more attacks in both cases: when used on their own and
when combined with the information of intrinsic and traffic variables. The best
option, IT+HM+HO, achieved an average AUC of 0.955 whereas the average
AUC achieved with the best option for adhoc processing, IT+C, was 0.91. Fur-
thermore, it was able to detect any kind of attacks because the minimum AUC,
taking into account all types of attacks, was 0.89. And besides, the proposed op-
tions were not computationally expensive since they require few mathematical
operations.

The way in which classifiers can be combined is an area where a deeper anal-
ysis can be carried out and more sophisticated approaches tried. The possibility
of using other clustering algorithms and the optimisation of their parameters is
also an area where more work can be done. In the same way, we could make
the system computationally more efficient by minimising the amount of infor-
mation kept on the signatures. We could keep just the bins higher than concrete
threshold value in the signature. But in this case we would lose information so
we would need to evaluate the trade-off.
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