
An Extension of the Core Method for
Continuous Values: Learning with Probabilities

Nuno C. Marques

CENTRIA/Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Quinta da Torre, 2829-516 Caparica, Portugal
nmm@di.fct.unl.pt

Abstract. This paper proposes an extension to the neuro-symbolic core
method useful when observations are expressed by continuous values.
Some theoretical results are presented regarding the learning process over
these observations. An illustrative example is reported, demonstrating
the problems of the original approach and justifying how this extension
can overcome them. Results of the extended approach on irregular con-
tinuous values (simulating probabilistic data) show similar results to the
original core method on clean symbolic data and point to the validity of
the approach.

1 Introduction

The core method [1], allows the encoding of any logic program into a feed-
forward one hidden layer neural network. This encoding expresses the immediate
consequence operator Tp of a logic program. So, a direct recursive connection
of the output layer to the input layer allows the computation of the result of
any logic program by a neural-network with a feed-forward core. Neuro-symbolic
(NeSy) integration for first order logic was recently achieved [2] with this method.

Knowledge encoding into neural networks was addressed in many works,
including initial work by McCulloch and Pitts [3], knowledge based neural net-
works [4] and work with the core method (e.g. [1], [2], [5]). Today, we believe
that more knowledge based approaches are one of the best ways to improve the
applicability of standard back-propagation learning methods [6] to data mining
and machine learning in general. One of the major advantages of these methods
is their deep knowledge and possible formal description of what can be computed
and learned from observations. From a machine learning perspective, the core
method has already very good results reported (e.g. [7], [8]), namely by achiev-
ing faster convergence and better precision results than standard non-symbolic
neural networks.

Unfortunately, results while applying the core method neural networks to nat-
ural language processing (e.g. [9]) were not so clear: improvements were detected
and reported, but more general use of the method revealed difficult. Namely, it



320 N. C. Marques

was too difficult to express the proper knowledge for this problem: backpropa-
gation learns very fast how to encode easy rules in data. However too specific
rules where easily forgotten during the training process.

Regarding neural-symbolic learning capabilities, the original core method
proposal just focused the logic representation, and a stepwise activation func-
tion [1]. So several studies have been made regarding neural-symbolic learning
capabilities, namely by replacing the stepwise function either by the standard
sigmoid or atan activation functions and using gradient methods (such as error
backpropagation, e.g. [8], [5]).

Recent results by [5], successfully propose a new way to encode symbolic
incomplete knowledge in NeSy networks and improve them with experimental
data. Also, until now, most results have always assumed binary input encodings:
as it was shown in [7], the core method requires specific input encoding intervals,
i.e. encoded rule output may be incorrect when inputs with intermediate values
between TRUE and FALSE are used. In this paper we will elaborate on the
results reported in [5], and conjoin them with the discussion of the problems that
occur when specific probabilistic values outside core method validity intervals are
used. Namely results in the learning speed and capabilities of backpropagation
learning will be discussed. A specific focus will take into account the use of a
probabilistic encoding, and an extension to the original core method will be
proposed.

An illustrative problem will be addressed: learning AND with simulated prob-
abilistic encoding.

2 The Core Method

Let us assume a sigmoid unit, where1:

net = w0 + w1x1 + · · ·+ wnxn,

and
o = σ(net).

In this unit, o is the output, w0 the bias and wi the connection weights for
each input xi belonging to train data observation X. Finally σ(x) is the sigmoid
function:

σ(x) =
1

1 + e−x
.

Generically core method rules are embedded into the network according to
the specification in [1], [8] or [5]. A one hidden layer feed-forward neural network
with a predefined constant ω is used. Each hidden layer neuron can encode an
AND rule. The unit connections are set to ω for positive literals and to −ω
1 This presentation of MLP neural-network learning for the core method will follow

Tom Mitchell’s notation and derivation of the backpropagation learning process in
neural networks [10], that can be consulted for further details.



An Extension of the Core Method for Continuous Values 321

-

6

1.02.0 9.0-9.0

0.3

0.5

0.7

0.9

w0 = −2

ω = 1

0

ω = 0.5

ω = 5

net = 0.5

σ(net)

net

Fig. 1. Basic sigmoid, and the effect of some constants on the sigmoid activation func-
tion.

for negative literals. The bias (w0) is set up such that this unit becomes active
if and only if the input of the network coincides with the rules precondition
(typically, ω× (l− 0.5), where l is the number of literals of the rule). If no other
constraints exist, the output layer can simply make an OR of hidden layer units
by setting connecting weights (wi) to 1.0 and bias to 0.0. Parameter ω is used
as a multiplying factor over the predefined weights, to give additionally stability
during neural network training. Bigger values of ω will make the sigmoid more
similar to a step-wise activation function (figure 2), this way, high values for ω
assure the encoded information is kept during learning.

Core method basic encoding can be exemplified with the following program:

A ∧ C 7→r1 F
A ∧ ¬B ∧D 7→r2 F

The network for this program should have as input neurons iA, iB , iC and iD. If
we take, e.g. ω = 5, rule r1 could be encoded by a hidden layer unit with hr1 =
σ(−7.5+5×iA+5×iC) and rule r2 by hr2 = σ(−12.5+5×iA+5×iB+5×iD). Final
output F will simply be encoded by F = σ(hr1+hr2−0). Usually, after encoding,
but before backpropagation learning, all connections are slightly disturbed by
adding some small random noise (e.g. [−0.1, 0.1].).

2.1 Backpropagation Learning in the Core Method Networks

Backpropagation learns the weights wi, by minimizing the squared error:

E[w] ≡ 1
2

∑
d∈D

(td − od)2,



322 N. C. Marques

where D is the set of training examples. So, the perceptron training rule can be
expressed as:

∆wi = η(t− o)xi,

t = c(x) is the target value for observation x and η is the learning rate (usually
0.1). The above training rule is convergent if training data is linearly separable
and η sufficiently small [10]. So, taking into account∇E[w] gradient, the training
rule:

∆w = −η∇E[w] = −η ∂E
∂wi

,

can be used to derive the gradient rules to train one sigmoid unit based on:

∂E

∂wi
= −

∑
d

(td − od)
∂od

∂netd
xi,d. (1)

Regarding learning in the core method, we should notice that by equation
1, learning depends on ∂od

∂netd
. But this introduces a problem when learning with

bigger values of ω. If we look at figure 2 we see that ω is indeed influencing
learning: bigger values of ω make the sigmoid approximate a stepwise function
and make ∂od

∂netd
go near zero, when values of net are bigger than 1.0 (this effect

was observed experimentally in [5]). This is also relevant for the core method
since the usual initialization of parameters is biasing the network and making
harder for equation 1 to update weights (i.e. update will be very small for large
values of net). This may be a good behavior, if we are certain on the rules, but
not advisable if rules need revision/are wrong (e.g. [5]). Indeed, for the following
discussion we should note that there is a learning zone that depends on ω and
on the values of net: in practice, only small enough values of net and ω make
learning possible (or, alternatively, fast enough).

3 Decisions based on distinct continuous values

Traditional error back-propagation in feed-forward neural networks deals with
continuous values. However, traditional logic is based on propositions and on
the truth value of those propositions. So, the usual input for the Core Method
uses a 0.0/1.0 encoding for Boolean values2. We think that, until now, this has
hidden a potential problem when generalizing the Core Method to continuous
inputs on sigmoid neural networks. Let us start by showing that:

Proposition 1 Any logic program with Boolean inputs can be encoded in a sig-
moid neural network.
2 An alternative −1.0/1.0 encoding is also frequently used with the σ(x) = atan(x)

function, namely for easier encoding of negated literals. Without loss of generality,
and for a more usual presentation, we have used the the equivalent sigmoid σ(x)
function.



An Extension of the Core Method for Continuous Values 323

Previous results (e.g. [7], [8]) have already shown a similar result. However,
this new formulation will be useful for our discussion because it explicitly takes
into account the value of ω.

Proof 1 Previous results showed how to encode any propositional logic program
inside a neural network with step-wise activation (e.g. proposition 4 in [1]). We
consider a sigmoid neuron active when the sigmoid function is bigger than some
appropriate value α and inactive when the sigmoid is smaller than some value
1−α (where α ∈ [0.5; 1[). Then, for any fixed α, we can make ω as big as needed,
so the sigmoid function will approach the step-wise activation function up to an
value ε. This way, we can make ε arbitrarily small, so that for any given problem
the neurons activate in a way that follows proposition 4 in [1]. •

By conjoining this proof with preceding discussion, we should notice there
is an engineering decision that must be taken when deciding the values to use
for ω. As it was already pointed, backpropagation algorithm can not learn well
enough for big values of ω. On the other side, if ω is too low and the encoded
information is not evident from experimental data, the core method encoded
information will be lost in noise and during backpropagation updates3. So we
must choose suitable ω values to encode our knowledge inside the neural network,
and, simultaneously, allow learning to be done.

Proposition 1 can now be extended for the cases when the input is not re-
stricted to Boolean values.

Proposition 2 Any logic program with conditions over a vector of continuous
values X can be encoded in a sigmoid neural network.

Proof 2 Any condition over a continuous value could be given a logical value by
constraints: Xi > TXi

.
So a sigmoid neuron having an input X, and a predefined ω can implement

this constraint, namely, if we consider a neuron with bias ω × TXi
:

1− alpha < 1
1 + e−ω×(Xi−TXi

)
< alpha.

So (e.g. figure 2),
Xi − TXi

> 0,

will be true iff Xi > TXi .
Let us consider a first hidden layer of such threshold units for all Xi ∈ X,

converting X to each logical value needed by program a P . Then, by proposition
3 During experiments we have observed that -due to the distributed nature of back-

propagation learning-, in some configurations, the already given information can even
be harmful. This happens when backpropagation tries to re-encode (or re-learn) that
information in distinct ways.



324 N. C. Marques

1, we can add a second hidden layer encoding this logic program P using the
logic output of this first hidden layer. •

With this result, we are no longer reduced to the single threshold bias of the
rule neuron and we can have a set of threshold values, distinct for each input.
Additional computational power of the neurons in this first hidden unit can also
be handy for more modular encodings of logical symbols (e.g. for encoding lists).
Moreover, we can increase ω value for the connection to this neurons, in order
to enforce some of the intended mappings (and to make it more stable during
learning) or to reduce them and so concentrate learning on those areas of the
network.

Probabilistic Encoding Proposition 2 is important for problems were we don’t
have a direct way to describe a given object in terms of its explicit features.
Usually, in these cases knowledge is better expressed using probability theory.
E.g. in [9], the probability that some word w being tagged as T was calculated
based on:

pw(T |event) =
freq(event, T )
freq(event)

.

In this equation, freq(event, Ti) denoted the number of times event had
mark T and freq(event) denoted the total number of observations of event. In
this encoding a probability value of, e.g. 0.1, would represent ten observations
per 100 occurrences of that event (e.g. a given word). This is a meaningful value
and could be modeled by some rule related to the presence of T . However there is
a language problem when we talk about probabilistic events in a logical format:
Assume Pb is the probability for a feature b and that Pc is the probability for
an independent feature c. If we know that a is the logic consequence of both b
and c, we can write:

a← b(Pb), c(Pc). (2)

According to this equation, if both b and c are probable enough to hold, i.e.
P (x) ≥ Tx then we should expect a to also hold. However, due to statistical
independence, Pa = Pb × Pc, i.e. the minimal value for Pa to hold is Pa

min =
Tb ×Tc, a value that should be in the non-accepting region of the usual T ≥ 0.5
core method perceptron (e.g. if Ta = Tb = 0.2, but Tc = 0.6, then the independent
event has Pa = 0.12 < Ta). In this case, it might not be advisable to change the
threshold of all the inputs by using the bias of the hidden neuron (i.e. either there
is an error in considering a and b FALSE or an error by considering c TRUE).
So, there could be a problem when representing this probability knowledge for a
neural network using the original core method. I.e., we may be interested in the
logical consequence of two events considered true, and not on the probability of
its joint occurrence. In this cases we should use the encoding proposed as a result
of proposition 2, so the decision surface of the core method perceptron can be



An Extension of the Core Method for Continuous Values 325

initialized according to the intended logical consequence function of individual
threshold values Tb and Tc.

4 An Illustrative Example while Learning an AND

1HL– Original Core Method 2HL– Extended Core Method

Fig. 2. Initial core methods neural networks, before training and initial weight distur-
bance.

For better illustrating the described problem, a simple C ← A ∧ B rule was
encoded in a feed-forward sigmoid based neural network with two inputs (A and
B) and a single output (C). According with the original core method, a neural
network with a single hidden unit was defined. We set ω = 5.0, so this unit
had the two initial weights (one for each possible value of input) also set to 5.0.
However the initial bias on all these networks was set to −9.5 (i.e. a slightly
higher bias that assumes T ≥ 0.9). This hidden unit was then connected with
the single output layer unit (C) with initial weight set to 1.0. The neural network
is represented in figure 2 – 1HL.

For this example two datasets were built simulating different threshold values
over the AND truth table: one had input TRUE values encoded as 0.4 and in
the other TRUE was encoded as 0.9. Output TRUE values were always encoded
as 1.0 and all FALSE values were encoded as 0.0.

A second neural network (represented in figure 2HL) was also built according
with proposition 2: a first hidden layer was added between input layer and the
original hidden layer. As described, this layer implements the threshold detection
for the 0.4 encoding. This layer has two hidden neurons (one representing each
input neuron), connected with initial weight of 5.0 to the neuron that is being
mapped and with 0.0 to the other neuron. Initial bias was set to −1.5 (i.e.
TX ≥ .3, with ω = 5.0). Finally weights in 1HL network were randomized
(between −0.1 and 0.1), to provide a control case (RND network).

The three neural networks were trained with standard backpropagation method
(η = 0.2). Learning stopped when error variation was smaller than 0.01. An ini-



326 N. C. Marques

tial disturbance of 0.1 was added to all networks. During training a weight dis-
turbance of 0.05 was done every 100 iterations. The SSE values for all networks
during the train process are represented in figure 3. Several other experiments
were also preformed with similar results. E.g., we should point that for the more
standard bias of 7.5 (i.e. T ≥ 0.5) a similar behavior was observed when TRUE
was encoded as 0.25. Namely the initial core method network revealed itself
much more sensible to noise than the network derived from proposition 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

0.4 1HL
0.9 1HL
0.4 2HL

0.4 RND

Fig. 3. Train error for learning an AND with four distinct encodings.

5 Discussion and Conclusions

The standard core method neural network on the 0.4 dataset (0.4 1HL) didn’t
converge in more than 100000 iterations4. We should also mention the impor-
tance of setting ω to appropriate values in 0.4 2HL network. Indeed, the first
hidden layer value for ω was first set to 1.0. However then, although the net-
work was still faster to learn than the control (RND) network, a much bigger
sensibility to the initial bias in the first hidden layer was detected, with conver-
gence only starting around iteration 500 and 0.1 SSE achieved around iteration
1000. When ω = 5.0 the behavior was more stable, and even if wrong initial bias
4 This was due to the noise added every 100 iterations. But even if jog weighting is

eliminated, 0.4 1HL network only starts convergence around iteration 5000.



An Extension of the Core Method for Continuous Values 327

were given (e.g. 0), the backpropagation quickly found the correct bias values.
Moreover, if we set ω to 10.0 the behavior of 0.4 2HL is indistinguishable of 0.9
1HL.

This small example shows how sensible the initial core method proposal
may be, when appropriate distinct continuous input conditions exist. Indeed
we should notice that 1HL network is much worse than the control (RND)
network on this peculiar case. Even minor weight changes can condition the
proper convergence of this network. From what we have observed the correct
initial knowledge encoded into the network was unused and made learning al-
most impossible for backpropagation algorithm. From ongoing experiments we
have noticed this effect to become even worst in real scenarios.

This result is clearly demonstrating the need of additional computational
structures for helping the network to find the truth values when inputs are
sent as continuous irregular values. It should be stressed that this was not a
theoretical example. Indeed there are many cases (as, e.g., the one mentioned
in [9]) where the additional information encoded in probability values is needed
for the system to perform properly. The main problem was that, although this
information should be provided to the neural network (so that it could learn
other relations with on free neurons), it was then difficult to encode the symbolic
knowledge into the network.

The solution presented by proposition 2 is quite valuable in these terms, since
it allows the network and training algorithm to protect encoded knowledge from
random fluctuations in data. Also the setting of ω values revealed itself as a
quite powerful tool to help in optimizing and even directing learning effort into
the appropriate areas of the network. Indeed, the author is now convinced that
we are now approaching the point were Neuro-Symbolic integration is starting
to prove its capabilities for general machine learning problems. The general per-
spective is that neural network programming and tuning for known knowledge
is now increasingly possible while still keeping the network open to learn other
information contained in training data.

6 Acknowledgments

This work would not have been possible without initial joint work done with Se-
bastian Bader and Steffen Hölldobler, namely during author’s stay as an invited
researcher in the Technical University of Dresden. I thank both of them, not
only their excellent help and support, but also the very good working conditions
and environment they made available in TU-Dresden.

References

1. Hölldobler, S., Kalinke, Y.: Towards a massively parallel computational model for
logic programming. In: Proceedings ECAI94 Workshop on Combining Symbolic
and Connectionist Processing, ECCAI (1994) 68–77



328 N. C. Marques

2. Bader, S., Hitzler, P., Hölldobler, S.: Connectionist model generation: A first-order
approach. Neurocomputing 51 (August 2008) 2420–2432

3. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (1943) 115–133

4. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artificial
Intelligence 70(1–2) (1994) 119–165

5. Bader, S., Hölldobler, S., Marques, N.C.: Guiding backprop by inserting rules.
In d’Avila Garcez, A.S., Hitzler, P., eds.: Proceedings of the 4th International
Workshop on Neural-Symbolic Learning and Reasoning, Patras, Greece, July 2008.
CEUR Workshop Proceedings, Vol. 366, 2008. ISSN 1613-0073. Volume 366. CEUR
Workshop Proceedings (2008) ISSN: 1613-0073.

6. McClelland, J., Rumelhart, D.: Parallel Distributed Processing. MIT Press (1986)
7. d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and

logic programming system. Applied Intelligence, Special Issue on Neural networks
and Structured Knowledge 11(1) (1999) 59–77

8. d’Avila Garcez, A.S., Broda, K.B., Gabbay, D.M.: Neural-Symbolic Learning
Systems — Foundations and Applications. Perspectives in Neural Computing.
Springer, Berlin (2002)

9. Marques, N.C., Bader, S., Rocio, V., Hölldobler, S.: Neuro-symbolic word tagging.
In José Neves, Manuel Filipe Santos, J.M., ed.: New Trends in Artificial Intel-
ligence, APPIA - Associação Portuguesa para a Inteligência Artificial (12 2007)
779–790

10. Mitchell, T.M.: Machine Learning. McGraw-Hill (March 1997)


