
NeatSqueak on Wheels:
Neural Networks Applied to Movement

Optimization

Hugo Peixoto1,2, João Portela1,2, Rui Teixeira1,2, Filipe Castro1,2, and Lúıs
Paulo Reis1,3

1 Faculdade de Engenharia da Universidade do Porto, Portugal
2 NIFEUP - Núcleo de Informática da Faculdade de Engenharia da Universidade do

Porto, Portugal
3 LIACC - Laboratório de Inteligência Artificial e Ciência de Computadores da

Universidade do Porto, Portugal
Rua Dr. Roberto Frias, s/n 4200-465 Porto PORTUGAL

{ei03047,hugo.peixoto,ei04034,ei03095,lpreis}@fe.up.pt

http://www.fe.up.pt

Abstract. In CiberRato competitions, deliberative agent implementa-
tions commonly use path planning algorithms. This creates the need for
a path following module, which would control the mouse motors and
drive him through a set of calculated waypoints. A common approach is
manually defining a decision tree, where the threshold values and mo-
tor outputs are empirically determined, obtaining a sub-optimal imple-
mentation. We’ve addressed this problem using optimization techniques
based on unsupervised learning. A neural network based solution was
developed through the use of genetic algorithms. Comparative data sup-
porting that this approach surpasses manual decision tree implementa-
tions is presented for waypoint following behaviours. The results achieved
enabled us to conclude that the development platform may be a valuable
tool for CiberRato competition participants.

Keywords: MicroRato, CiberRato, Artificial neural network, Genetic
algorithm, Movement, Optimization, NEAT, Intelligent Robotics

1 Introduction

CiberRato is a set of competitions, held by the University of Aveiro, composed
by a simulation of a virtual environment, in which several agents are located.
The environment consists of a 2D rectangle-like arena, which is populated by
obstacles and one or more targets, each one signaled by a beacon. The virtual
robots are placed in a predetermined starting grid. The competitors must provide
software which leads the agents to accomplish a set of predefined goals[1].

The virtual robots’ morphology is simple. They’re composed of a circular
base, equipped with sensors, actuators and command buttons. Information is



280 H. Peixoto et al.

sent and received through a connection with the simulator, which adds noise to
both the sensor readings and the actuator values[1].

In mainstream competitions, the main goal consists of finding one or more
targets, which are located in arbitrary positions of the map. The score is usually
based on the number of collisions and on the time they take to complete their
tasks.

This environment poses a series of challenges regarding the algorithmic na-
ture of autonomous robot control[2]. World mapping, path planning, waypoint
following, error control and exploration behaviours can be seen as examples of
such challenges.

Most documented agent architectures implemented by the participants of
these competitions include a waypoint following module. In reactive architec-
tures, it can be seen that there is a behaviour which moves the agent in the
direction of a beacon[3]. In more complex architectures, there are several imple-
mentations of various path planning algorithms, which need to be complemented
with a behaviour that moves the agent to a defined point[4][5][6][7].

This shows us that the waypoint following behaviour is widely used through-
out several architectures, and it is present in almost every agent implementation.
This being true, the optimization of this module brings a general increase in most
agents’ performance.

The architectures described throughout several articles[3][4][5][6][7] explain
that the behaviour is usually tuned manually, without the application of an
optimization technique, suggesting that the results obtained are sub-optimal
solutions.

The only actuators available to the agent are the powers supplied to both
left and right engines, represented as real values in the range [−0.15, 0.15]. We
propose that the optimal values can be calculated from a set of parameters
related to the set of waypoints and to the current motors’ power. To determine
the relationship between these two, we suggest a technique based on artificial
neural networks for the optimization of the agents’ movement, when following a
set of waypoints.

First, the algorithmic background of the explored approach will be shortly
exposed. In section 3, the architecture beneath the CiberRato neuroevolution
platform is described, along with some choices like the fitness function that dis-
tinguishes the individuals. Next, section 4 documents the data gathered through
the study, along with its analysis. Finally, in section 5, we will discuss the ob-
tained results, detailing both the manual and the machine learning approaches.

2 State of the art

Improving the waypoint following behaviour performance can be achieved using
reinforcement learning techniques. The application of these methods is attrac-
tive, as there is no need to specify how the task is to be achieved[8].

According to [9], there are two main strategies for solving reinforcement-
learning problems. The first one is based on the search in the space of behaviours,



NeatSqueak on Wheels: Neural Networks Applied to Movement Optimization 281

trying to find one that performs well. The second approach uses statistic tech-
niques and dynamic programming methods to estimate the utility of each action.
We opted for the first strategy, in which evolutionary algorithms are commonly
used techniques.

NEAT - Neuroevolution of augmenting topologies - is a neuroevolutionary
technique which uses a genetic algorithm for the evolution of artificial neural
networks[10], where both topology and connection weights are evolved.

With NEAT, one needs to design and implement a fitness function that eval-
uates the neural network according to the training goals. As previously stated[8],
this technique requires no knowledge of expected network outputs, topology and
connection weights.

Radi and Poli[11] showed that NEAT halts its network improvement after a
smaller number of generations than other TWEANN4 algorithms, which leads
us to believe that there is no significant gain in evolving a population for a big
number of generations, opting instead for recording several runs of the evolution
process.

3 Approach

Through the application of the NEAT algorithm, we developed neural networks
capable of driving the agent towards a specified waypoint. The agent’s motors’
power values are directly obtained from the neural network’s outputs. This neural
network will be refered to as brain.

The agent’s path following architecture is presented in algorithm 1. The
inputs() method used in line 7 will be discussed in section 3.2.

set target(first waypoint());1

while simulation is running do2

read sensors();3

if on top of target waypoint then4

set target(next waypoint());5

end6

(leftMotor, rightMotor) = brain.activate(inputs());7

drive motors(leftMotor, rightMotor);8

request sensors();9

end10

Algorithm 1: Basic agent algorithm

4 TWEANN: Topology and weight evolving artificial neural networks



282 H. Peixoto et al.

The evaluation of each brain depended on the number of waypoints that
the respective agent could reach within the simulation time limit. For each way-
point reached the agent was rewarded with 1 fitness point. To further distinguish
between agents who have reached the same number of waypoints, they were addi-
tionally rewarded according to the distance covered towards the next waypoint.
This is shown in the following formula.

f = Nw + 1− D(Pa, Pw+1)
D(Pw, Pw+1)

– Nw - number of waypoints reached

– D(x, y) - distance between point x and y

– Pa - final position of the agent

– Pw - position of the last visited waypoint

– Pw+1 - position of the next waypoint

3.1 Evolution platform and server configuration

The evaluation of each brain is made through the use of CiberRato simulator.
In order to reduce the evaluation time of all brains in a generation, we opted
to develop a distributed platform specifically for the evolution and evaluation of
CiberRato brains.

The platform requires the definition of a set of paremeters. First, one must
specify the CiberRato server configuration. Second, the set of labyrinths in which
the brains will be evaluated must also be specified.

Regarding the server configuration, we opted for the standard parameters,
with one exception. The server usually adds gaussian noise to the sensors and
actuators. In our experiments, this noise was disabled. This decision was made
so that this first attempt could focus on the path following problem. An error
correction module could be added in further experiments through the use of
modular neural networks[12], for instance.

3.2 Test and control groups

There were several parameters which could serve as the neural network inputs. To
explore the results that each set of parameters would yield, we designed a set of
test groups comprising several input configurations. These groups’ characteristics
are illustrated in table 1.

Each waypoint is represented by two input nodes to the network, one for the
distance and another for the angle. Motor information requires two additional
input nodes, one for each previous motor power value. The number of inputs
and outputs required by each group is also represented in table 1.

A control group was used, this group implemented a manually tuned way-
point following module — group Upsilon. This implementation is based solely
on the angle between the agent’s direction and the next waypoint.



NeatSqueak on Wheels: Neural Networks Applied to Movement Optimization 283

Waypoints Motor Input nodes Output nodes

Alpha One No 2 2
Beta One Yes 4 2
Gamma Two No 4 2
Delta Two Yes 6 2

Table 1. Groups’ characteristics

3.3 Tests Description

The agent should be capable of optimizing a series of different movements. It
should be capable of following a straight path without veering, make sharp and
shallow turns clock and counter-clockwise and also reverse it’s orientation. A
set of training maps were devised in order to evaluate each agents’ efficiency
performing these tasks.

To validate the generalization of the resulting networks, there was the need
to create a map in which several patterns could be analysed. The map waypoints
arrangement can be seen in figure 1.

Due to the deterministic nature of the neural network architecture and the
absence of noise, the same simulation run more than once will always yield the
same results.

Fig. 1. Validation (Testing Grounds)



284 H. Peixoto et al.

3.4 Evolution Methodology

The test groups were all evolved using the same parameters. Their population
size was 104 individuals and the evolution process went on for 100 generations.
The other genetic algorithm parameters were left untouched, and the ANJI plat-
form default values were used. There are some settings worthy of notice. ANJI’s
capability to generate recurrent connections in its ANN was disabled, so that the
network complexity wouldn’t be heightened. We propose that the chosen input
values are enough to determine the next simulation state. This being true, the
neural network should need no extra information to provide an optimal mapping
function between the inputs and the outputs.

The initial topology was set as a fully connected network, which is the sim-
plest network in which all the outputs are dependent on every input.

4 Results

When the neuroevolution runs finished, all the champions were placed on the val-
idation course. For each group, the group champion was defined as the run cham-
pion which had the best performance on this map. Their fitness was recorded
on table 2. As described by the fitness function, these values represent, approx-
imately, the medium number of waypoints that each brain reached per training
map.

Fitness

Alpha 7.891
Beta 8.197
Gamma 7.973
Delta 7.895

Table 2. Group champions’ fitness

Group champions were then evaluated on all training maps and their perfor-
mance recorded on table 3. The control group, Upsilon, was also evaluated.



NeatSqueak on Wheels: Neural Networks Applied to Movement Optimization 285

Testing grounds Map 1 Map 2 Map 3 Map 4

Upsilon 2433 275 273 283 468
Alpha 1653 197 200 200 320
Beta 1714 183 196 197 324
Gamma 1674 187 189 195 320
Delta 1676 189 194 197 325

Table 3. Number of cycles that each group champion took to finish several maps

The fitness evolution was also recorded, as shown in figures 2, 3, 4 and 5.
There are three lines in each graph, representing the minimum, average and
maximum fitness per generation.

Fig. 2. Alpha fitness evolution graph Fig. 3. Beta fitness evolution graph

Fig. 4. Gamma fitness evolution graph Fig. 5. Delta fitness evolution graph



286 H. Peixoto et al.

4.1 Analysis

Observing table 3, it is possible to calculate the average improvement of the test
groups upon the control group. The average improvement is µ = 30.47%, with a
variance of σ2 = 2.5%2 Although the number of samples is considerably small,
the improvement is significative.

From figures 2 and 4, one can observe that both alpha and gamma groups
have a high fitness improvement around the first 50 generations, and little gain in
the following 50. This could be an indication that there is little room for further
optimization. It should also be noted that the gamma group, which uses motor
speed information, has slightly higher average fitness values. This improvement
is possible due to the server’s inertia simulation.

Groups with two waypoints, whose fitness evolution is represented in figures
3 and 5, have a significantly slower progress. While beta group seems to stabilize
around generation 80, the delta group doesn’t appear to achieve a stable position
within the 100 generations.

Improvement gained from the addition of the second waypoint information
is not evident when alpha and beta groups’ average values are compared. Nev-
ertheless, it can be seen that beta groups yielded higher champion values.

As expected, as the neural network base complexity grows, the neuroevolu-
tion development time increases accordingly.

5 Conclusions and further study

Optimization in CiberRato waypoint following behaviours using artificial neural
networks offers significant improvement over manually tuned approaches. Our
results support that there is room for approximately 30% gain in the time spent
following waypoints.

Considering how little the difference between the first and the second place
can be (regarding the CiberRato competition), the improvement provided by our
proposed module may prove decisive, specially when the agent’s architecture is
heavily based on waypoint following.

Although some useful observations can already be extracted from this exper-
iment, further statistical data gathering would allow us to develop a correlation
between the groups’ performance and their network inputs. The number of gen-
erations for which the test groups ran didn’t prove to be sufficient in the delta
(two waypoints with motor information) group. Further study with extra gener-
ations could help determine the stabilization point.

The CiberRato neuroevolution platform, which integrates the CiberRato sim-
ulation system and the ANJI platform, can prove to be a valuable asset in fur-
ther neural network optimization tasks. This will ease the development of further
projects, allowing developers to focus on the design of fitness formulas, training
courses and other neuroevolution parameters.

The presented study can be extended to integrate obstacle detection and
avoidance. This would prove valuable in CiberRato competitions, where mapping
is usually probabilistic — adding extra flexibility to the proposed behaviour.



NeatSqueak on Wheels: Neural Networks Applied to Movement Optimization 287

Acknowledgements

This work was partially supported by FCT Project PTDC/EIA/70695/2006
”ACORD - Adaptative Coordination of Robotic Teams”.

References

1. Nuno Lau and Artur Pereira. Manual do ciberrato. Technical report, Departamento
de Electrónica, Telecomunicações e Informática da Universidade de Aveiro, 2008.

2. Nuno Lau, Artur Pereira, Andreia Melo, António Neves, and João Figueiredo.
Ciber-rato: Um ambiente de simulação de robots móveis e autónomos. Revista do
DETUA, 3(7):647–650, 2002.

3. Emmanuel Lomba. R zero: Um agente virtual ”reactivo ma non troppo”. Revista
do DETUA, 3(7):666–669, 2002.

4. Pedro Ribeiro. Yam (yet another mouse) - um robot virtual com planeamento de
caminho a longo prazo. Revista do DETUA, 3(7):672–674, 2002.

5. Lúıs Paulo Reis. Ciber-feup - um agente para utilizar o simulador ciber-rato no
ensino da inteligência artificial e robótica inteligente. Revista do DETUA, 3(7):655–
658, 2002.

6. Robin Lilja, Johan Hägg, Batu Akan, Fredrik Ekstrand, Hüseyin Aysan, Jörgen
Lidholm, and Moris Benham. Technical description of the (l)ost agent. Ciber-
Mouse@RTSS 2008 - The 29th IEEE Real-Time Systems Symposium, pages 17–20,
2008.

7. Álvaro Monteiro, Fábio Aguiar, and Sara Carvalho. Speedygonzalez: A path plan-
ning and plan execution agent. CiberMouse@RTSS 2008 - The 29th IEEE Real-
Time Systems Symposium, pages 21–23, 2008.

8. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

9. Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: a survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

10. Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evol. Comput., 10(1063-6560):99–127, 2002.

11. Amr Radi and Riccardo Poli. Discovering efficient learning rules for feedforward
neural networks using genetic programming. pages 133–159, 2003.

12. Farooq Azam and Farooq Azam. Biologically inspired modular neural networks.
Technical report, 2000.


