Intelligent Robotic Mapping and Exploration with
Converging Target Localization

Jodo Certb? Jodo Lobato Oliveifaand Luis Paulo R€i$

LFEUP — Faculty of Engineering of the UniversityRafrto, Portugal;
2 LIACC - Attificial Intelligence and Computer Scienkab., University of Porto, Portugal;
joao.certo@fe.up.pt, jmldso@gmail.com, Ipreis@fetip

Abstract. This paper presents different methodologies foraze solving agent
in unknown environments. The developed methodofogielude an odometry
based localization system, a converging targetlilation based on the centre
of mass of recursive triangulations, and a regvessbstacle distance function,
along with an obstacle setting and sweeping meshafdr mapping. A quad-
tree solution was used for map representation,aanthnovative exploring A*

for path planning was developed. A quasi-reactiva)-following agent serves

as a comparison basis and a simulation environcahgd ciber-rato was used
to test the implemented architecture and valida¢edieveloped methods within
gradually increasing difficult scenarios. Besideg treactive agent being
typically less time consumptive, the exploring d@etture granted greater
consistency and robustness. The results also elitheetime-improvement of
using the exploring A* and the efficiency of tharget localization method as
gradually converging to the real target position.

1 Introduction

Cyber-Mouse (Ciber-Rato) is a modality includedthie “Micro-Rato” competition,
directed to teams interested in the algorithmicdéssand software control of mobile
autonomous robots [1]. This modality is supportgdatsoftware environment, which
simulates both robots and a labyrinth [2]. The GyMeuse has a body diameter of 1
mouse unitym) and seven available sensors although only twer, sslectable, can
be used at any given time. The final purpose ieeth the cheese, identified by a
ground sensor and detectable through a directiowiging beacon sensor visible
trough low walls. Mouse’s performance is evaluatedugh success on reaching the
cheese, the time it took and the number of collisio

The cyber-mouse competition has been used, amanthst applications as a
testbed for long-term planning [3], as a scenaoiothe detection and avoidance of
dangerously shaped obstacles [4], or even as aféodhe teaching of Artificial
Intelligence and Robotics [5]. In this paper we laate the problems of mapping,
localization and path planning by building a deldteve agent that can find its way
from a starting position to the target without plimowledge of the maze. Ultimately
this architecture’s performance is compared tcaatiree approach.

The paper structure is as follows. The next sectimtusses the problems of
mapping and self-localization, navigation and pathnning together with some

232 J. Certo, J.L. Oliveira, L.P. Reis

related state of the art algorithms leading todiesen approaches. Section 3 presents
the developed methodologies. Section 4 containestription of a comparative
reactive agent, the testing environments and thpeive results. Finally, section 5
concludes this paper and points to future work.

2 Robotic Mapping and Planning Overview

Mapping is the process of building an estimatehef metric map of the environment
[6]. The mapping problem is generally regarded oftrimportance in the pursuit of
building truly autonomous mobile robots, but stilhpping unstructured, dynamic, or
large-scale environments remains largely an opsgareh problem.

Planning is the process of deciding which rout¢éat@ based on and expressed in
terms of the current internal representation of tikain. Typically this process
calculates the cost of each motion decision towdhdstarget, based on a given
heuristics, and chooses the “cheapest” one.

2.1 Mapping and Localization Problem

To acquire a map, robots must possess sensorerthbte it to perceive the outside
world. Sensors commonly brought to carry out thasktinclude cameras; range
finders (using sonar, laser or infrared technolpgadlars, tactile sensors, compasses,
and GPS. However, all these sensors are subjeerrtns, often referred to as
measurement noise, and to strict range limitations.

So, considering these issues several differentlestgds can arise to robotic
mapping: statistically dependent sensors measurtenwse, high dimensionality of
the entities that are being mapped, data assatigtioblem (determining if sensor
measurements taken at different points in time espond to the same physical
object), environments changing over time and raxploration.

The motion commands issued during environment eaptm also carry important
information for building maps, since they convefoimation about the locations at
which different sensor measurements were takenoRpointion is also subject to
errors and the controls alone are therefore insefft to determine a robot's pose
(location and orientation) relative to its envirogmh If the robot's pose was known
all along, building a map would be quite simplen@ersely, if we already had a map
of the environment, there are computationally ei¢gand efficient algorithms for
determining the robot's pose at any point in tine.combination, however, the
problem is much harder.

Considering the map representation problem, whia$ & significant impact on
robot control [7], we can account for three mainthods: Free space maps (road
mapping), as spatial graphs, including Voronoi tiags, and generalised Voronoi
diagrams; object maps; and composite maps (cetirdposition) as point grids, area
grids and quad trees.

Virtually all state-of-the-art algorithms for rolotmapping in the literature are
probabilistic. They all employ probabilistic model&the robot and its environment
relying on probabilistic inference for turning sensneasurements into maps [6].

Intelligent Robotic Mapping and Exploration with Genging Target Localization 233

2.2 Navigation and Path Planning

In artificial intelligence, planning originally mata search for a sequence of logical
operators or actions that transform an initial Wastate into a desired goal state [8].
Robot motion planning focuses primarily on the stations and rotations required to
navigate, considering dynamic aspects, such agtamtées, differential constraints,
modelling errors, and optimality. Trajectory plamgiusually refers to the problem of
taking the solution from a robot motion planningaithm and determining how to
move along the solution in a way that respectsrtbehanical limitations of the robot.

The classic path planning problem is then findingpbision-free path from a start
configuration to a goal configuration, in a reasdeaamount of time, given the
robot’s body constitution and the map represematas retrieved in the mapping
process.

In an unknown environment the mapping and moti@nping must be processed
in parallel through exploration and dynamic navigatdecisions. This structure
requires plans updating. A natural way of updaptans is to first select a path based
on the present knowledge, then move along thatfoata short time while collecting
new information, and re-planning the path basedem findings.

Considering the application many algorithms haveenbgroposed for path
planning: A and A Star (A*), Dijkstra, Best-Firdyavefront Expansion, Depth-First
Search, Breadth-First Search.

3 Exploring Agent Methods and Architecture

The architecture of our exploring agent is presgntefour independent modules,
concerning the self-localization, target (goal)dlization, mapping and navigation,
and path planning problem. These modules were riaied) to solve various mazes
facing an unknown environment without any previknoswledge.

3.1 Self-Localization

The self-localization is based on the robots’ odmynevhich is defined by a dynamic
inertial movement model [9]. Due to Gaussian ndfee simulator model induces a
linear motion maximum error given by Eq. 1.

< Max(MotorPow) * NoiseDeviation + MotorResolution/2
- Max(MotorPow)

As such, for each position estimate there is a marid deviation for the Cartesian
coordinates and 3* for the rotation angle. The simulator defines
Max(MotorPow)=0.15, NoiseDeviation=1.5% and MotorResolution=0.001; which
infers 6~1.83% and a rotation error of 3.66%, acceptableHisrapplication. In order
to correct cumulative odometry rotation errors, toenpass is read every 50 cycles,
always accounting for the compass sensor latendycgtles.

(%))

234 J. Certo, J.L. Oliveira, L.P. R«

3.2 Target Localizatior— Centre of Mass from Recursive Triangulation:

In order to define an initial plan of attack two tin@dologies were considered |
marking the initial taret position. If the beacon isn’t visible a randoondtion
defines its disposition as being within any of tbar map corners, changing eve
userdefined number of cycles (usually 500) to one codifferent from the formei
As soon as the beacon isible an initial rough estimation of the target &aulated
by intercepting the line defined by the mouse amel heacon points with the m
bounds. From the resultant 4 points the initiajy¢amposition is considered as be
the convergent point (in e beacon direction — see Eccl@ser to the mous

A more accurate target position is recursively edeichéy computing the centre
mass resultarftom successive triangulatiol as illustrated in Fig..1ITo achieve this
within every 25 cycles, if the beacon is visiblelire Y, is traced along the targ
direction. In order to retrieve the real beacordion,a, this process accourfor the
beacon sensor’s latency o cycles Each line is then intercepted with each of
former ones resulting in a conjunction of intercgpints F (X;, Y;). In order tc
restrict these points to the ones converging tdatget Eq2 was applied:

P, =P if((—90° < 6 < 90°) AND X; > X,)
P, =P if((—180° < 6 < —90°0R 90° < 6 < 180°) AND X; < X,) 2
else Remove Pi

o o

@

&
= @ o~ &
=9

Y aa e o ‘

P . o8 o o
o
° o o LineIntersection o ___—— PointRemoved
a
) @ MousePosition E——
[} Centre of Mass =
) ‘ (Beacon Estimate) = =
° =

Al

[
Beacon Position

Fig. 1. Target localization from recursive triangulationsft(to right): method overviev(a);
removing interceppoints displaced from the moi-target square, at a mouse posii(b).

All the points outsid the map bounds are also filterefifter having 5valid
intercep points, while the mouse moves towards the es@ichadrget, every poit
displaced from the mou-beacon square (see Fig. 1b), alonthwie ones distancir
more than Bimfrom the current target estimate, are removed fitwarlist

Npoints
{XC = (Z o Xi)/Npoints
i=

Npoints (3)
kYC = (Z'—O Yi)/Npoints

Intelligent Robotic Mapping and Exploration with Ganging Target Localization 235

Finally the target position, given by Eq. 3, isctaéted as the centre of mass of the
intercept points in the given time. Whenever a rime, Y,, is traced the target
position is re-calculated, granting a robust taggtimation, which is enhanced as the
mouse moves towards the target.

3.3 Mapping

Our mapping algorithm is based on a deterministicleh representing the distance to
an obstacle given the obstacle sensor value. Theisneepresented using a multi-
resolution quad-tree decomposition since this ation grants good performance
for this application, with low processing cost.

In the presence of an obstacle we used a quadytiéging to subdivide each of
the obstacle cells. Our quad-tree strategy useslaptive division depth to a deepest
cell size (granularity) of Oldm. Fig. 2 illustrates different granularities forffdrent
known maps.

Fig. 2. Real map overlapped with quad-tree representatesnté right): RTSSO06Final with
0.7Umdepth(a); 2005Final with 0.Umdepth(b).

3.3.1 Obstacle Detection

The navigation and consequent mapping is basethewlistacles disposition along
the map. To calculate the robot’s distance to astamte relative to its sensor values, a
series of successive experimental measurementstakae as seen in Fig. 3.

12 L |
15 1 \

0 2 3 5 8 1

Fig. 3. Obstacle distance distribution — obstacle senstueg in horizontal axis (units);
obstacle distance in vertical axis (mouse unit)n(f left to right): the full distributior(a);
distribution for sensor values ranging from 0.9.10 (b); distribution for sensor values ranging
from 1.1 to 4.5c).

236 J. Certo, J.L. Oliveira, L.P. R«

Throughlinear regressioiit was possible to obtain the following equatiorg(4)
whered is the distance al x the sensor values.

d = 4.1981x3 - 10.84x2 + 8.1978x - 0.0403, if 0.9 <x < 1.0
{d = —0.0001x° +0.0046x* — 0.0561x° + 0.3435%% — 1.095x +2.2027, (4
if 11<x<46
\ d=06 ifx>46

These functions estimate the obstacle dist (from the mouse’s body centrwith
a maximum errorg, of 0.21Um for sensor values in the range @£-1.0, and
0.18mfor values in thel.1-4.5 range.

3.3.2 ObstacleSetting and Sweeping
The sensoavailable in the cyb-mouse simulation systetras an aperturengle of
60°, as depicted iRig. 4a.

Fig. 4. Obstacle sensor cover: (a); quad-tree cells identified as obstadles

As the furthestetectable obstle has a distance of approximate Un6 (derived
from Eg. 4)for the maxinum x equal to 4.8m. This corresponds to a possil
obstacle betweenYand Y, (Fig. 4) of 1.&Jm. As the detected obstacle can be in
part of that spacey set o cells between Yand Y, are marked as an obsta So, in
order b assure that all cells are mar (depicted in Fig. 4bjp set of points i
generated. The points are placed along the arnatefby the distance to obsta
minus a user defined safety distance (ast 0.3Jm for the mouse bodyyut usually
0.63Um). As the number of points depend both on this digaamd the deepest ¢
maximum width(w), the number of marked poi is given by Eq. 5:

(m), (w/2 w/2
I3/sn () <1
N(d,w)z{ w2

= >
1, P >1

()

The previous nthioc can lead to cells wrongly marked as obstacles.réieroto
solve this problem aweeping mechanis was developed to cledotocked (obstacle
cells making thenpassable ags. This mechanism is very similar to the obst:
setting mechanism with the difencesof marking passable cells (instead
obstacles), fixatingl (user definable) anrestrictingthe aperture of sweeping to h
(30°). These restrictions were made so that thetrabuldn’t be cyclically markin
the same cells as blocked or pass

An exemplar resultarinternal map representation of the robot is showfig. 5.

Intelligent Robotic Mapping and Explorationth Converging Target Localizati 237

Fig. 5. Robot internal map after solving a maze.

3.4. Path Planning Exploring A*

To find a path between a previously computed ohjecind the agent, the-Star
(A*) algorithm is usec This decision was made by balancing implementatiost
with a guarantee of a solutic This algorithm is implemented over theag-tree map
representatiorgefining the shortest path towards the target byking waypoints ir
the correspondent map cell cent

Eq. 6 representthe cost between the source point and the targint, which
passes throughode n

f@) =gn) + h(n) (6)

Hereg(n) is the real cost from the source to nin, andh(n) is the estimated co
between nod@ and the targeif(n) is the total cost of the path that passes thrc
noden. The customai heuristic function would be thEuclidean distance betwe
the source and the target positiHowever, when solely usinifpe Euclidian distanc
as the cost for reaching a target, the robot wagdnd a great amount of tir
mapping around the same obstacle. In order tce this problema different heuristi
was developedvhere the waypoint cost the Euclidian distance affect by the
quadtree cell depth ar a weight f), as defined in Eq. 7.

Cost (A, B) = Dist(A, B) * Depth(B),f =1 (M

|

[— I m | B R Ll HE

. . M e . . =
v . . “
|
|

. | . ! .
|

[@ ot Iniid Beacon ® Obstarle @ Node —Path @ Beacon Estmatir [@ouse intal Beacon @ Gostade ® Node —path @ Beacon Estmatir

Fig. 6. Comparison of exploring algorithmclassic A*@); Exploring A* (b).

This methodassure that the mouse explores the map, towards the bg
preferably following big cellsConsequently it increases the exploring seepcan b

238 J. Certo, J.L. Oliveira, L.P. R«

seen in Fig. 6band the mous¢s velocity. The guarantee of solution given by 1
classic A* is maintained as the exploring A* woulglvert to passir trough smal
cells after exploring the larger ce

3.5 Navigation and Contro

The robot is controlled by following each waypoteintre given by the A* algorithi
towards the target. The robot rotates to each waypentre and accelerates in t
direction. The waypoint centre is considered reachéukirobot’s coordinate valu
are within a certain error margin of that cer
The agent navigation speeds are dynamically adjusted are dependent

several factors. Simple control optimizationslude a speed increase in rotatiot
there are big differences between the current aagte the waypoint direction
increasing speed if a waypoint is far away. Morevasted implemented spe
optimizations take into account subsequent waypaamd ther relative direction ir
order to further increase the mouse’ performe

3.6 Visualization Syster

In order to visualize the current internal robatisip representation, in r-time, a
visualization system was developed. This interfat®wn inFig. 7, was designe
upon the Java opessurce JFreeChart AI[10]. Its zooming capabilities, as well
its Cartesian disposition, extend this system taudging purposes. As observable
different series, with different colours, were dg&d; each representing an individ
estimation: pink for the mouse pdon, yellow for the initial (attack) beacon positic
red for the obstacle’s cell centres, blue for tlassable cell centres, green for
planned path, and black for the current beacomasitbn

P
LI I I)

4 0 . U 5 o fed o Qe 10
i ¢, L
H o bl B Jof 1o

4 d_in P 4
4 . > o g0
2] E] H
. o

TR i

o

It

.

3
0 . L
2 .
e

. .
§ 0 ES E0TE 0105 6D 4 5 0 S ¥ 5 % 8 & £ 0 B % 85 % § 8 % 3 3 © a4 » ® ¥ § % ¥ % %

Fig. 7. Visualization system for different, incrementalppolevels

4. Experiments and Resuli

In order to test and validate the proposed apprahéh section is divided in three:
presentation of a reactive agent architecture sgnas a comparative bi, a
description of different evaluation scenarios amqmtesentation of the resu

Intelligent Robotic Mapping and Exploration with Genging Target Localization 239

4.1 Reactive Agent Architecture

Although this quasi-reactive (wall-following) artécture isn’t the focus of this paper,
it is well suited to serve as a comparative basedsults evaluation. The designed
reactive agent consists on a behaviour-based rsiatdine.

When the simulation starts, the robot begins wlikh $tate-ind Beacon, rotating
the robot around itself until it finds the beacon,walking randomly until a wall is
found. When the beacon is found, the robot chaitgestate toFollow Beacon and
goes forward until it reaches the ground beacoa ardinds a wall. If the beacon is
reached, the state changesBtmacon Area Reached and the simulation ends. On the
other hand, if a wall is found instead, the robleariges state t€hange Direction,
rotating itself to the side which has no detectatd#ls. Once the robot stops detecting
a wall directly in front, it changes to the st&tellow Wall. On this state the robot
simply goes forward until it stops detecting theesivall. When it stops detecting the
side wall, or detects another wall in front it chas back to th€ind Beacon state.

Besides the state, two additional non-reactive eldmwere included: the time
since the mouse was near a wall and a memory afetaéve side of the wall being
followed. The notion of time allowed the mouse tanger randomly to a wall when
no beacon is found (high-walls) and to maintaini@ation for a short time after
leaving the wall. Remembering the wall being folemvallowed the avoidance of a
problem where the robot would cyclically alternb&tween close opposing walls.

4.2 Evaluation Scenarios

In order to evaluate each experiment the followiggadually increasing difficult
scenarios, were chosen.

Fig. 8. Evaluation maps (from top-left to bottom-right): d&a(a); MicRato98(b); 2001Final
(c); RTSS06Fina(d); 2005Finake).

As can be seen in Fig. 8: tlBasic map has a small wall between the mouse and
the beacon (a)MicRato98 is an easy map with only low walls (b2001Final, a
medium difficulty map with only low walls (c)RTSSO6Final, a hard map with low
and high walls (d)2005Final, a very hard map with low and high walls (e).

240 J. Certo, J.L. Oliveira, L.P. Reis

The evaluation was done by observing if the moesehed the cheese or not and
the time it took to do it. For the exploring agesitice collisions impose errors in the
self-localization procedure which would make thbabfail the waypoints (given by
A*) towards the target, the number of collisionsrerét considered. Additionally,
when relevant, an observational description of theuse’ behaviour during the
experiment may be included to further evaluate @rdpare the approaches.

4.3 Results

Each map was tested with the two described mazengokxperiments. For results
comparison, in both experiments the tests were maitle two self-localization
systems: through odometry measurement (see 3.1wahdGPS. Different deepest
cell’'s maximum sizes (considered in the quad-treeochposition) were used: a fixed
resolution of 0.Um that guarantees map solving (for the maximunuibstacle
distance) and one variable, granting the best pmadnce for each map. Since the
simulator adds some noise in the sensors and acsu#iiree different runs for each
map and agent were performed. As such, conclusiamde made from averaging the
results and thus overcoming the stochastic natutieecsimulator.

4.3.1. Maze solving in an Unknown Map - Reactiv&gent Evaluation
In this experiment we tested our (quasi-)reactiyend Smart-Follower, for paradigm
comparison. The results are shown in Table 1.

Table 1. Experimental results for tHamart-Follower agent.

Experiments

Follower 3 Average .
= = = - = = Observations
Collisiony Time [Collisions| Time |Collisions| successful Exp.| Time |Collisions|
1260 28 1244 3 0
950 450 836 3 0
638 790 NA 2 0
NA 1366 NA 1 0
NA NA NA 0 NA

The enclosure conflict happens when the mouse is surroundedhsyagles very
close to each other. Although the side sensorsctlate obstacle there was enough
room for the mouse to pass. Twall-beacon happens when the mouse is near a U-
shaped wall. At each wall end the mouse turns tdsvilre beacon coincident with the
obstacle centre. As such, the mouse follows theesaall in the opposite direction.

4.3.2 Exploring Agent Evaluation

The following Table 2 then presents the exploriggra performance in resolving the
proposed evaluating scenarios, for the self-loatitn and GPS methods. In order to
visually depict the agent’'s deliberations, name$y mapping, planning and target
estimation abilities, while solving some of thetéglsmazes (and as proof of concept),
Fig. 9 presents some screen shots of a succesgkiiment.

Intelligent Robotic Mapping and Explorationth Converging Target Localizati 241

00 25 50 75 130 135 15C 175 X 50 475 30,0

[@¥ouse intil Beazon ® b —Fath @Bsacon Esimaticn ¢ Bearon A

Fig. 9. Exploring agentuns o1 RTSS06Final map (from left to right): GR&; Odometn (b).

Table 2.Exploring Agent Map Resul

Experiments
Unknown M 3 S ;
nknown Map GRERESN] Success Observations
Time Time Exp.
] 562 3
Map1 - Basic 682 3
2634 2
Map2 - MicR
ET) icRato98 NA 1
NA 2
Map3 - 2001Final
ap! [fE] 4266 1
NA 2
Map4 -R Final
lap4 - RTSS06Fina 6954 3
Map5 - 2005Final A o
ap5 - ina NA 0

In this experiment the corner collision is «explanatory as representing 1
collisions at the obstacles’ corners level. We fbwome problems at solving t
Final2005 and theMicRato98 maps due to the distance between walls, which p$
at the lowes margin (1..Um) in many situations, blocking the mouse, due &
mapping methodology limitatior

5. Conclusions and Future Worl

As observable in the qu-reactive experiment (4.3.1), approaches featurmge
deliberations can quite effectively rdve most of the simpler maps (first 3 Table
1) and situations with simple algorithr

During the simulations, the localization methoddyly corverges to the re:
target position as the new measurements add polmssering around the beag,
resulting in a better centre of mass that givesteebbeacon estimati

The initial approach of usinclassic A* was too time consuming b@ practica
As an example, comparing the worst time from Table & Map 4 (10234 cycle,
the agent using classic A* was still very far frahe target, due tanavigaton and
explorationvery close to obstacl. Nevertheless we believe thelassic A’ would
eventuallyallow the agent to reach the bea. As such,using the exploring A* witt

242 J. Certo, J.L. Oliveira, L.P. Reis

anf factor of 1.2 (trial-error adjust) lead to a gréate improvement. Yet, in worst
case scenarios, with large clusters of small oketathe exploring A* can take longer
but still guarantees a solution.

In comparison to the reactive agent, the explonnguse evinced better map
solving capabilities. In terms of consistency, fesswith the exploring agent were
more favourable as it was capable of repeatedlyirplthe same mapsBésic,
2006Final and 2001Final — Table 2), contradicting the reactive mouse’savédur
(Basic and MicRato98 in Table 1). This was possible due to the expiprgent's
abilities to bypass U-shaped obstacles and reciogniis position, thus leaving
already explored areas.

As a limitation, for the maps that the reactiveragmuld solve, the time taken for
the exploring agent to conclude each map (excepgh®oBasic map) was greater than
with the reactive implementation. This was to bpested as map navigation (cell
marking) isn't as effective as sensor navigatioal(following).

Within the reactive agent when comparing odometrPS navigation (Table 2)
we conclude that the GPS’s had a superior rataiofess but odometry was more
time effective. Besides the less need for adjustsném reach the cell centre, the
reason for time effectiveness of odometry is thalkerror in obstacle detection that
eliminates some hysteresis caused by setting aad@ng obstacles.

In the future the use of both lateral proximity sers along with a probabilistic
model for obstacles' detection should greatly inaprdhe mapping efficiency.
Parameters like the exploring weight, sensor apestdor marking and cleaning
obstacles, distance for cleaning obstacles caeti® @ptimal by using reinforcement
learning mechanisms. The maximum cell depth cao bk dynamically adjusted
using a greedy algorithm, like hill-climbing, ind&r to improve performance.

References

[1] Almeida, L., Fonseca, P., Azevedo, J.L.: The MiBato Contest: a popular approach to
improve self-study in electronics and computerrsoée SMC'2000, IEEE Int. Conference
on Systems, Man and Cybernetics, Vol. 1, NashwilgA (2000) 701 — 705.

[2] Lau, N., Pereira, A., Melo, A., Neves, A., Figuédioe J.: Ciber-Rato: Um Ambiente de
Simulacéo de Robots Mdveis e Autbnomos. Revista dBUFE3 (2002) 647 - 650.

[3] Ribeiro, P.: YAM (Yet Another Mouse) - Um Robot Vidgucom Planeamento de
Caminho a Longo Prazo. Revista do DETU/&802) 672-674

[4] Luis, P., Martins, B., Almeida, P., Silva, V.: Datdo de ConfiguracBes de Obstaculos
Perigosas: Aplicacéo no Robd EnCuRRalado. Revista ddJBE3 (2002) 659-661.

[5] Reis, L.P.: Ciber-FEUP - Um Agente para Utilizarim@ador Ciber-Rato no Ensino da
Inteligéncia Artificial e Robética Inteligente. Retéisio DETUA 3 (2002) 655-658.

[6] Thrun, S. — Robotic Mapping: A Survey CMU-CS-02-11002).

[71 Murphy, R.R.: An Introduction to Al Robotics. BradfoBbok, MIT Press : Cambridge,
Massachussets, London England (2000)

[8] LaVvalle, S.: Planning Algorithms. Cambridge UniveydPress, 2006.

[9] Lau, N., CiberRato 2008 Rules and Technical Spedificaf online at:
http://microrato.ua.pt/main/Docs/RegrasMicroRato2@18.pdf accessed 15 April 2009.

[10] Gilbert, D.: The JFreeChart Class Library Referenceubmntation. Simba Management
Limited (2002) 158.

