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Abstract. This paper presents different methodologies for a maze solving agent 
in unknown environments. The developed methodologies include an odometry 
based localization system, a converging target localization based on the centre 
of mass of recursive triangulations, and a regressive obstacle distance function, 
along with an obstacle setting and sweeping mechanism for mapping. A quad-
tree solution was used for map representation, and an innovative exploring A* 
for path planning was developed. A quasi-reactive, wall-following agent serves 
as a comparison basis and a simulation environment called ciber-rato was used 
to test the implemented architecture and validate the developed methods within 
gradually increasing difficult scenarios. Besides the reactive agent being 
typically less time consumptive, the exploring architecture granted greater 
consistency and robustness. The results also evinced the time-improvement of 
using the exploring A* and the efficiency of this target localization method as 
gradually converging to the real target position. 

1   Introduction 

Cyber-Mouse (Ciber-Rato) is a modality included in the “Micro-Rato” competition, 
directed to teams interested in the algorithmic issues and software control of mobile 
autonomous robots [1]. This modality is supported by a software environment, which 
simulates both robots and a labyrinth [2]. The Cyber-Mouse has a body diameter of 1 
mouse unit (Um) and seven available sensors although only two, user selectable, can 
be used at any given time. The final purpose is to reach the cheese, identified by a 
ground sensor and detectable through a direction providing beacon sensor visible 
trough low walls. Mouse’s performance is evaluated through success on reaching the 
cheese, the time it took and the number of collisions.  

The cyber-mouse competition has been used, amongst other applications as a 
testbed for long-term planning [3], as a scenario for the detection and avoidance of 
dangerously shaped obstacles [4], or even as a tool for the teaching of Artificial 
Intelligence and Robotics [5]. In this paper we evaluate the problems of mapping, 
localization and path planning by building a deliberative agent that can find its way 
from a starting position to the target without prior knowledge of the maze. Ultimately 
this architecture’s performance is compared to a reactive approach. 

The paper structure is as follows. The next section discusses the problems of 
mapping and self-localization, navigation and path planning together with some 
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related state of the art algorithms leading to the chosen approaches. Section 3 presents 
the developed methodologies. Section 4 contains a description of a comparative 
reactive agent, the testing environments and the respective results. Finally, section 5 
concludes this paper and points to future work. 

2   Robotic Mapping and Planning Overview 

Mapping is the process of building an estimate of the metric map of the environment 
[6]. The mapping problem is generally regarded of most importance in the pursuit of 
building truly autonomous mobile robots, but still mapping unstructured, dynamic, or 
large-scale environments remains largely an open research problem. 

Planning is the process of deciding which route to take based on and expressed in 
terms of the current internal representation of the terrain. Typically this process 
calculates the cost of each motion decision towards the target, based on a given 
heuristics, and chooses the “cheapest” one. 

2.1   Mapping and Localization Problem 

To acquire a map, robots must possess sensors that enable it to perceive the outside 
world. Sensors commonly brought to carry out this task include cameras; range 
finders (using sonar, laser or infrared technology), radars, tactile sensors, compasses, 
and GPS. However, all these sensors are subject to errors, often referred to as 
measurement noise, and to strict range limitations. 

So, considering these issues several different challenges can arise to robotic 
mapping: statistically dependent sensors measurement noise, high dimensionality of 
the entities that are being mapped, data association problem (determining if sensor 
measurements taken at different points in time correspond to the same physical 
object), environments changing over time and robot exploration. 

The motion commands issued during environment exploration also carry important 
information for building maps, since they convey information about the locations at 
which different sensor measurements were taken. Robot motion is also subject to 
errors and the controls alone are therefore insufficient to determine a robot’s pose 
(location and orientation) relative to its environment. If the robot’s pose was known 
all along, building a map would be quite simple. Conversely, if we already had a map 
of the environment, there are computationally elegant and efficient algorithms for 
determining the robot’s pose at any point in time. In combination, however, the 
problem is much harder.  

Considering the map representation problem, which has a significant impact on 
robot control [7], we can account for three main methods: Free space maps (road 
mapping), as spatial graphs, including Voronoi diagrams, and generalised Voronoi 
diagrams; object maps; and composite maps (cell decomposition) as point grids, area 
grids and quad trees. 

Virtually all state-of-the-art algorithms for robotic mapping in the literature are 
probabilistic. They all employ probabilistic models of the robot and its environment 
relying on probabilistic inference for turning sensor measurements into maps [6]. 
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2.2   Navigation and Path Planning 

In artificial intelligence, planning originally meant a search for a sequence of logical 
operators or actions that transform an initial world state into a desired goal state [8]. 
Robot motion planning focuses primarily on the translations and rotations required to 
navigate, considering dynamic aspects, such as uncertainties, differential constraints, 
modelling errors, and optimality. Trajectory planning usually refers to the problem of 
taking the solution from a robot motion planning algorithm and determining how to 
move along the solution in a way that respects the mechanical limitations of the robot. 

The classic path planning problem is then finding a collision-free path from a start 
configuration to a goal configuration, in a reasonable amount of time, given the 
robot’s body constitution and the map representation, as retrieved in the mapping 
process. 

In an unknown environment the mapping and motion planning must be processed 
in parallel through exploration and dynamic navigation decisions. This structure 
requires plans updating. A natural way of updating plans is to first select a path based 
on the present knowledge, then move along that path for a short time while collecting 
new information, and re-planning the path based on new findings. 

Considering the application many algorithms have been proposed for path 
planning: A and A Star (A*), Dijkstra, Best-First, Wavefront Expansion, Depth-First 
Search, Breadth-First Search. 

3   Exploring Agent Methods and Architecture 

The architecture of our exploring agent is presented in four independent modules, 
concerning the self-localization, target (goal) localization, mapping and navigation, 
and path planning problem. These modules were integrated to solve various mazes 
facing an unknown environment without any previous knowledge. 

3.1   Self-Localization 

The self-localization is based on the robots’ odometry which is defined by a dynamic 
inertial movement model [9]. Due to Gaussian noise the simulator model induces a 
linear motion maximum error given by Eq. 1. 

� ≤ ��������	
��� ∗ �������������� + ����	���������� 2⁄��������	
���    �%� (1) 

As such, for each position estimate there is a maximum δ deviation for the Cartesian 
coordinates and 2*δ for the rotation angle. The simulator defines 
Max(MotorPow)=0.15, NoiseDeviation=1.5% and MotorResolution=0.001; which 
infers δ≈1.83% and a rotation error of 3.66%, acceptable for this application. In order 
to correct cumulative odometry rotation errors, the compass is read every 50 cycles, 
always accounting for the compass sensor latency of 4 cycles. 
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3.2   Target Localization

In order to define an initial plan of attack two methodologies were considered for 
marking the initial targ
defines its disposition as being within any of the four map corners, changing every 
user-defined number of cycles (usually 500) to one corner different from the former. 
As soon as the beacon is vis
by intercepting the line defined by the mouse and the beacon points with the map 
bounds. From the resultant 4 points the initial target position is considered as being 
the convergent point (in th

A more accurate target position is recursively estimated by computing the centre of 
mass resultant from successive triangulations;
within every 25 cycles, if the beacon is visible, a line Y
direction. In order to retrieve the real beacon direction, 
beacon sensor’s latency of 4
former ones resulting in a conjunction of intercept points P
restrict these points to the ones converging to the target Eq. 
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Fig. 1. Target localization from recursive triangulations (left to right): method overview 
removing intercept points displaced from the mouse

All the points outside
intercept points, while the mouse moves towards the estimated target, every point 
displaced from the mouse
more than 3Um from the current target estimate, are removed from the list.
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3.2   Target Localization– Centre of Mass from Recursive Triangulations

In order to define an initial plan of attack two methodologies were considered for 
marking the initial target position. If the beacon isn’t visible a random function 
defines its disposition as being within any of the four map corners, changing every 

defined number of cycles (usually 500) to one corner different from the former. 
As soon as the beacon is visible an initial rough estimation of the target is calculated 
by intercepting the line defined by the mouse and the beacon points with the map 
bounds. From the resultant 4 points the initial target position is considered as being 
the convergent point (in the beacon direction – see Eq. 2 closer to the mouse.

more accurate target position is recursively estimated by computing the centre of 
from successive triangulations; as illustrated in Fig. 1. To achieve this, 

within every 25 cycles, if the beacon is visible, a line YA is traced along the target 
direction. In order to retrieve the real beacon direction, α, this process accounts 
beacon sensor’s latency of 4 cycles. Each line is then intercepted with each of the 
former ones resulting in a conjunction of intercept points Pi (Xi, Yi). In order to 
restrict these points to the ones converging to the target Eq. 2 was applied: 
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Target localization from recursive triangulations (left to right): method overview 
t points displaced from the mouse-target square, at a mouse position 

All the points outside the map bounds are also filtered. After having 5 
t points, while the mouse moves towards the estimated target, every point 

displaced from the mouse-beacon square (see Fig. 1b), along with the ones distancing 
from the current target estimate, are removed from the list. 
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Centre of Mass from Recursive Triangulations 

In order to define an initial plan of attack two methodologies were considered for 
et position. If the beacon isn’t visible a random function 

defines its disposition as being within any of the four map corners, changing every 
defined number of cycles (usually 500) to one corner different from the former. 

ible an initial rough estimation of the target is calculated 
by intercepting the line defined by the mouse and the beacon points with the map 
bounds. From the resultant 4 points the initial target position is considered as being 

closer to the mouse. 
more accurate target position is recursively estimated by computing the centre of 

. To achieve this, 
is traced along the target 

, this process accounts for the 
. Each line is then intercepted with each of the 

). In order to 

-0 (2) 

 

Target localization from recursive triangulations (left to right): method overview (a); 
target square, at a mouse position (b). 

. After having 5 valid 
t points, while the mouse moves towards the estimated target, every point 

th the ones distancing 

(3) 
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Finally the target position, given by Eq. 3, is calculated as the centre of mass of the 
intercept points in the given time. Whenever a new line, YA, is traced the target 
position is re-calculated, granting a robust target estimation, which is enhanced as the 
mouse moves towards the target. 

3.3   Mapping 

Our mapping algorithm is based on a deterministic model representing the distance to 
an obstacle given the obstacle sensor value. The map is represented using a multi-
resolution quad-tree decomposition since this representation grants good performance 
for this application, with low processing cost. 

In the presence of an obstacle we used a quad-tree gridding to subdivide each of 
the obstacle cells. Our quad-tree strategy uses an adaptive division depth to a deepest 
cell size (granularity) of 0.1Um. Fig. 2 illustrates different granularities for different 
known maps. 

  

Fig. 2. Real map overlapped with quad-tree representation (left to right): RTSS06Final with 
0.7Um depth (a); 2005Final with 0.1Um depth (b). 

3.3.1 Obstacle Detection 
The navigation and consequent mapping is based on the obstacles disposition along 
the map. To calculate the robot’s distance to an obstacle relative to its sensor values, a 
series of successive experimental measurements were taken as seen in Fig. 3.  

 

Fig. 3. Obstacle distance distribution – obstacle sensor values in horizontal axis (units); 
obstacle distance in vertical axis (mouse units) (from left to right): the full distribution (a); 
distribution for sensor values ranging from 0.9 to 1.0 (b); distribution for sensor values ranging 
from 1.1 to 4.5 (c). 
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Through linear regression 
where d is the distance and

12
3 H �  4.1981�K –  H �  "0.0001�M � 0

These functions estimate the obstacle distance
a maximum error, δ, of 0.213
0.189Um for values in the 

3.3.2 Obstacle Setting and 
The sensor available in the cyber
60º, as depicted in Fig. 

Fig. 4. Obstacle sensor coverage

As the furthest detectable obstac
from Eq. 4) for the maxim
obstacle between Y1 and Y
part of that space, a set of
order to assure that all cells are marked
generated. The points are placed along the arc defined by the distance to obstacle 
minus a user defined safety distance (at lea
0.65Um). As the number of points depend both on this distance and the deepest cell 
maximum width (w), the number of marked points

��H, ��
The previous method

solve this problem a sweeping mechanism
cells making them passable again
setting mechanism with the differ
obstacles), fixating d (user definable) and 
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking 
the same cells as blocked or passable.

An exemplar resultant 
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linear regression it was possible to obtain the following equation (Eq. 
is the distance and x the sensor values.  

 10.84�O  �  8.1978� –  0.0403, �  0.9 ' � ' 1.00.0046�S " 0.0561�K � 0.3435�O " 1.095� � 2.2027   �  1.1 ' � ' 4.6H � 0.6, �  � + 4.6
hese functions estimate the obstacle distance (from the mouse’s body centre) 

, of 0.213Um for sensor values in the range of 0.9
for values in the 1.1-4.5 range. 

Setting and Sweeping 
available in the cyber-mouse simulation system has an aperture a

Fig. 4a. 

Obstacle sensor coverage (a); quad-tree cells identified as obstacles (b

detectable obstacle has a distance of approximate 1.6Um
for the maximum x equal to 4.5Um. This corresponds to a possible 

and Y2 (Fig. 4) of 1.6Um. As the detected obstacle can be in any 
a set of cells between Y1 and Y2 are marked as an obstacle.

o assure that all cells are marked (depicted in Fig. 4b) a set of points is 
generated. The points are placed along the arc defined by the distance to obstacle 
minus a user defined safety distance (at least 0.5Um for the mouse body, but 

As the number of points depend both on this distance and the deepest cell 
), the number of marked points is given by Eq. 5: 

� � �
1U2
U3V3 sinZ[ \� 2⁄H ]^  , � 2⁄H  ' 1 

1 ,   � 2⁄H _ 1 
0   

thod can lead to cells wrongly marked as obstacles. In order to 
sweeping mechanism was developed to clean blocked (obstacle) 

passable again. This mechanism is very similar to the obstacle 
setting mechanism with the differences of marking passable cells (instead of 

(user definable) and restricting the aperture of sweeping to half 
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking 
the same cells as blocked or passable. 

An exemplar resultant internal map representation of the robot is shown in 

it was possible to obtain the following equation (Eq. 4) 

02027, (4) 

(from the mouse’s body centre) with 
0.9-1.0, and 

has an aperture angle of 

 

b). 

m (derived 
his corresponds to a possible 

As the detected obstacle can be in any 
are marked as an obstacle. So, in 

a set of points is 
generated. The points are placed along the arc defined by the distance to obstacle 

but usually 
As the number of points depend both on this distance and the deepest cell 

(5) 

can lead to cells wrongly marked as obstacles. In order to 
blocked (obstacle) 

. This mechanism is very similar to the obstacle 
of marking passable cells (instead of 

the aperture of sweeping to half 
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking 

in Fig. 5. 
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Fig. 

3.4.   Path Planning - 

To find a path between a previously computed objective and the agent, the A
(A*) algorithm is used.
with a guarantee of a solution.
representation, defining the shortest path towards the target by marking waypoints in 
the correspondent map cell centres.

Eq. 6 represents the cost between the source point and the target poi
passes through node n.

Here g(n) is the real cost from the source to node 
between node n and the target. 
node n. The customary
the source and the target position. 
as the cost for reaching a target, the robot would spend a great amount of time 
mapping around the same obstacle. In order to solv
was developed where the waypoint cost is 
quad-tree cell depth and

`��� �)

Fig. 6. Comparison of exploring algorithms: 

This method assures
preferably following big cells. 
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Fig. 5. Robot internal map after solving a maze. 

 Exploring A* 

To find a path between a previously computed objective and the agent, the A
(A*) algorithm is used. This decision was made by balancing implementation cost 
with a guarantee of a solution. This algorithm is implemented over the quad

defining the shortest path towards the target by marking waypoints in 
the correspondent map cell centres. 

the cost between the source point and the target poi
ode n. 

 ��� � a��� � b��� 

is the real cost from the source to node n, and h(n) is the estimated cost 
and the target. f(n) is the total cost of the path that passes through 

. The customary heuristic function would be the Euclidean distance between 
the source and the target position. However, when solely using the Euclidian distance 
as the cost for reaching a target, the robot would spend a great amount of time 
mapping around the same obstacle. In order to solve this problem, a different heuristic

where the waypoint cost is the Euclidian distance affected
tree cell depth and a weight (f), as defined in Eq. 7. 

�), c� � �����), c�  ��d�b�c�e ,   _ 1 

Comparison of exploring algorithms: classic A*(a); Exploring A* (b

assures that the mouse explores the map, towards the beacon,
preferably following big cells. Consequently it increases the exploring step, as can be 
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To find a path between a previously computed objective and the agent, the A-Star 
This decision was made by balancing implementation cost 

uad-tree map 
defining the shortest path towards the target by marking waypoints in 

the cost between the source point and the target point, which 

(6) 

is the estimated cost 
is the total cost of the path that passes through 

Euclidean distance between 
the Euclidian distance 

as the cost for reaching a target, the robot would spend a great amount of time 
a different heuristic 

the Euclidian distance affected by the 

(7) 

 

b). 

that the mouse explores the map, towards the beacon, 
, as can be 



238 J. Certo, J.L. Oliveira, L.P. Reis

 

seen in Fig. 6b, and the mouse
classic A* is maintained as the exploring A* would revert to passing
cells after exploring the larger cells.

3.5   Navigation and Control

The robot is controlled by following each waypoint centre given by the A* algorithm 
towards the target. The robot rotates to each waypoint centre and accelerates in that 
direction. The waypoint centre is considered reached if the robot’s coordinate values 
are within a certain error margin of that centre.

The agent navigation speeds are dynamically adjusted and are dependent on 
several factors. Simple control optimizations inc
there are big differences between the current angle and the waypoint direction or 
increasing speed if a waypoint is far away. More advanced implemented speed 
optimizations take into account subsequent waypoints and thei
order to further increase the mouse’ performance.

3.6   Visualization System

In order to visualize the current internal robot’s map representation, in real
visualization system was developed. This interface, shown in 
upon the Java open-source JFreeChart API 
its Cartesian disposition, extend this system to debugging purposes. As observable, 5 
different series, with different colours, were designed; each representing an individual 
estimation: pink for the mouse posit
red for the obstacle’s cell centres, blue for the passable cell centres, green for the 
planned path, and black for the current beacon estimation.

Fig. 7. Visualization system for different, incremental, zoom levels.

4.   Experiments and Results

In order to test and validate the proposed approach, this section is divided in three: a 
presentation of a reactive agent architecture serving as a comparative base
description of different evaluation scenarios and a presentation of the results.
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and the mouse’s velocity. The guarantee of solution given by the 
classic A* is maintained as the exploring A* would revert to passing trough small 
cells after exploring the larger cells. 

3.5   Navigation and Control 

The robot is controlled by following each waypoint centre given by the A* algorithm 
towards the target. The robot rotates to each waypoint centre and accelerates in that 

ection. The waypoint centre is considered reached if the robot’s coordinate values 
are within a certain error margin of that centre. 

The agent navigation speeds are dynamically adjusted and are dependent on 
several factors. Simple control optimizations include a speed increase in rotation if 
there are big differences between the current angle and the waypoint direction or 
increasing speed if a waypoint is far away. More advanced implemented speed 
optimizations take into account subsequent waypoints and their relative direction in 
order to further increase the mouse’ performance. 

3.6   Visualization System 

In order to visualize the current internal robot’s map representation, in real
visualization system was developed. This interface, shown in Fig. 7, was designed 

source JFreeChart API [10]. Its zooming capabilities, as well as 
its Cartesian disposition, extend this system to debugging purposes. As observable, 5 
different series, with different colours, were designed; each representing an individual 
estimation: pink for the mouse position, yellow for the initial (attack) beacon position, 
red for the obstacle’s cell centres, blue for the passable cell centres, green for the 
planned path, and black for the current beacon estimation. 

Visualization system for different, incremental, zoom levels. 

4.   Experiments and Results 

In order to test and validate the proposed approach, this section is divided in three: a 
presentation of a reactive agent architecture serving as a comparative base
description of different evaluation scenarios and a presentation of the results.

The guarantee of solution given by the 
trough small 

The robot is controlled by following each waypoint centre given by the A* algorithm 
towards the target. The robot rotates to each waypoint centre and accelerates in that 

ection. The waypoint centre is considered reached if the robot’s coordinate values 

The agent navigation speeds are dynamically adjusted and are dependent on 
lude a speed increase in rotation if 

there are big differences between the current angle and the waypoint direction or 
increasing speed if a waypoint is far away. More advanced implemented speed 

r relative direction in 

In order to visualize the current internal robot’s map representation, in real-time, a 
, was designed 

. Its zooming capabilities, as well as 
its Cartesian disposition, extend this system to debugging purposes. As observable, 5 
different series, with different colours, were designed; each representing an individual 

ion, yellow for the initial (attack) beacon position, 
red for the obstacle’s cell centres, blue for the passable cell centres, green for the 

 

In order to test and validate the proposed approach, this section is divided in three: a 
presentation of a reactive agent architecture serving as a comparative base, a 
description of different evaluation scenarios and a presentation of the results. 
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4.1   Reactive Agent Architecture 

Although this quasi-reactive (wall-following) architecture isn’t the focus of this paper, 
it is well suited to serve as a comparative base for results evaluation. The designed 
reactive agent consists on a behaviour-based state-machine. 

When the simulation starts, the robot begins with the state Find Beacon, rotating 
the robot around itself until it finds the beacon, or walking randomly until a wall is 
found. When the beacon is found, the robot changes its state to Follow Beacon and 
goes forward until it reaches the ground beacon area or finds a wall. If the beacon is 
reached, the state changes to Beacon Area Reached and the simulation ends. On the 
other hand, if a wall is found instead, the robot changes state to Change Direction, 
rotating itself to the side which has no detectable walls. Once the robot stops detecting 
a wall directly in front, it changes to the state Follow Wall. On this state the robot 
simply goes forward until it stops detecting the side wall. When it stops detecting the 
side wall, or detects another wall in front it changes back to the Find Beacon state. 

Besides the state, two additional non-reactive elements were included: the time 
since the mouse was near a wall and a memory of the relative side of the wall being 
followed. The notion of time allowed the mouse to wander randomly to a wall when 
no beacon is found (high-walls) and to maintain a direction for a short time after 
leaving the wall. Remembering the wall being followed allowed the avoidance of a 
problem where the robot would cyclically alternate between close opposing walls. 

4.2   Evaluation Scenarios 

In order to evaluate each experiment the following, gradually increasing difficult 
scenarios, were chosen. 

 

Fig. 8. Evaluation maps (from top-left to bottom-right): Basic (a); MicRato98 (b); 2001Final 
(c); RTSS06Final (d); 2005Final (e). 

As can be seen in Fig. 8: the Basic map has a small wall between the mouse and 
the beacon (a); MicRato98 is an easy map with only low walls (b); 2001Final, a 
medium difficulty map with only low walls (c); RTSS06Final, a hard map with low 
and high walls (d); 2005Final, a very hard map with low and high walls (e). 
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The evaluation was done by observing if the mouse reached the cheese or not and 
the time it took to do it. For the exploring agent, since collisions impose errors in the 
self-localization procedure which would make the robot fail the waypoints (given by 
A*) towards the target, the number of collisions weren’t considered. Additionally, 
when relevant, an observational description of the mouse’ behaviour during the 
experiment may be included to further evaluate and compare the approaches. 

4.3   Results 

Each map was tested with the two described maze solving experiments. For results 
comparison, in both experiments the tests were made with two self-localization 
systems: through odometry measurement (see 3.1) and with GPS. Different deepest 
cell’s maximum sizes (considered in the quad-tree decomposition) were used: a fixed 
resolution of 0.1Um that guarantees map solving (for the maximum 1.5Um obstacle 
distance) and one variable, granting the best performance for each map. Since the 
simulator adds some noise in the sensors and actuators, three different runs for each 
map and agent were performed. As such, conclusions can be made from averaging the 
results and thus overcoming the stochastic nature of the simulator. 

4.3.1.   Maze solving in an Unknown Map - Reactive Agent Evaluation 
In this experiment we tested our (quasi-)reactive agent, Smart-Follower, for paradigm 
comparison. The results are shown in Table 1. 

Table 1. Experimental results for the Smart-Follower agent. 

 

The enclosure conflict happens when the mouse is surrounded by obstacles very 
close to each other. Although the side sensors detect an obstacle there was enough 
room for the mouse to pass. The wall-beacon happens when the mouse is near a U-
shaped wall. At each wall end the mouse turns towards the beacon coincident with the 
obstacle centre. As such, the mouse follows the same wall in the opposite direction. 

4.3.2   Exploring Agent Evaluation 
The following Table 2 then presents the exploring agent performance in resolving the 
proposed evaluating scenarios, for the self-localization and GPS methods. In order to 
visually depict the agent’s deliberations, namely its mapping, planning and target 
estimation abilities, while solving some of the tested mazes (and as proof of concept), 
Fig. 9 presents some screen shots of a successful experiment. 
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Fig. 9. Exploring agent runs on

Table 2. Exploring Agent Map Results.

In this experiment the corner collision is self
collisions at the obstacles’ corners level. We found some problems at solving the 
Final2005 and the MicRato98
at the lowest margin (1.5
mapping methodology limitations.

5.   Conclusions and Future Work

As observable in the quasi
deliberations can quite effectively reso
1) and situations with simple algorithms.

During the simulations, the localization method gradually con
target position as the new measurements add points clustering around the beacon
resulting in a better centre of mass that gives a better beacon estimative.

The initial approach of using 
As an example, comparing to
the agent using classic A* was still very far from the 
exploration very close to obstacles
eventually allow the agent to reach the beacon

GPS

Odometry

GPS

Odometry

GPS

Odometry

GPS

Odometry

GPS

Odometry
Map5 - 2005Final

Map1 - Basic

Map2 - MicRato98

Map3 - 2001Final

Map4 - RTSS06Final

Unknown Map
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runs on RTSS06Final map (from left to right): GPS (a); Odometry

Exploring Agent Map Results. 

In this experiment the corner collision is self-explanatory as representing the 
collisions at the obstacles’ corners level. We found some problems at solving the 

MicRato98 maps due to the distance between walls, which is kept 
t margin (1.5Um) in many situations, blocking the mouse, due to its 

mapping methodology limitations. 

5.   Conclusions and Future Work 

As observable in the quasi-reactive experiment (4.3.1), approaches featuring some 
deliberations can quite effectively resolve most of the simpler maps (first 3 in 
) and situations with simple algorithms. 

During the simulations, the localization method gradually converges to the real 
target position as the new measurements add points clustering around the beacon
resulting in a better centre of mass that gives a better beacon estimative. 

The initial approach of using classic A* was too time consuming to be practical.
As an example, comparing to the worst time from Table 2 in Map 4 (10234 cycles)
the agent using classic A* was still very far from the target, due to navigati

very close to obstacles. Nevertheless we believe that classic A*
allow the agent to reach the beacon. As such, using the exploring A* with 

1 2 3 Average Success.

Time Time Time Time Exp.

260 658 562 493 3 NA

Odometry 260 364 682 435 3 NA

2544 NA 2634 2589 2 Corner Collision

Odometry NA 2328 NA 2328 1 Small Obstacles' Aperture

3432 2598 NA 3015 2 Corner Collision

Odometry NA NA 4266 4266 1 Corner Collision

10234 7322 NA 8778 2 Corner Collision

Odometry 5344 5546 6954 5948 3 NA

NA NA NA NA 0 Small Obstacles' Aperture

Odometry NA NA NA NA 0 Small Obstacles' Aperture
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an f factor of 1.2 (trial-error adjust) lead to a great time improvement. Yet, in worst 
case scenarios, with large clusters of small obstacles, the exploring A* can take longer 
but still guarantees a solution. 

In comparison to the reactive agent, the exploring mouse evinced better map 
solving capabilities. In terms of consistency, results with the exploring agent were 
more favourable as it was capable of repeatedly solving the same maps (Basic, 
2006Final and 2001Final – Table 2), contradicting the reactive mouse’s behaviour 
(Basic and MicRato98 in Table 1). This was possible due to the exploring agent’s 
abilities to bypass U-shaped obstacles and recognizing its position, thus leaving 
already explored areas. 

As a limitation, for the maps that the reactive agent could solve, the time taken for 
the exploring agent to conclude each map (except for the Basic map) was greater than 
with the reactive implementation. This was to be expected as map navigation (cell 
marking) isn’t as effective as sensor navigation (wall following).  

Within the reactive agent when comparing odometry to GPS navigation (Table 2) 
we conclude that the GPS’s had a superior rate of success but odometry was more 
time effective. Besides the less need for adjustments to reach the cell centre, the 
reason for time effectiveness of odometry is the small error in obstacle detection that 
eliminates some hysteresis caused by setting and sweeping obstacles. 

In the future the use of both lateral proximity sensors along with a probabilistic 
model for obstacles' detection should greatly improve the mapping efficiency. 
Parameters like the exploring weight, sensor apertures for marking and cleaning 
obstacles, distance for cleaning obstacles can be set to optimal by using reinforcement 
learning mechanisms. The maximum cell depth can also be dynamically adjusted 
using a greedy algorithm, like hill-climbing, in order to improve performance. 
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