

Intelligent Robotic Mapping and Exploration with
Converging Target Localization

João Certo1,2, João Lobato Oliveira1 and Luís Paulo Reis1,2

1 FEUP – Faculty of Engineering of the University of Porto, Portugal;
2 LIACC – Artificial Intelligence and Computer Science Lab., University of Porto, Portugal;

joao.certo@fe.up.pt, jmldso@gmail.com, lpreis@fe.up.pt

Abstract. This paper presents different methodologies for a maze solving agent
in unknown environments. The developed methodologies include an odometry
based localization system, a converging target localization based on the centre
of mass of recursive triangulations, and a regressive obstacle distance function,
along with an obstacle setting and sweeping mechanism for mapping. A quad-
tree solution was used for map representation, and an innovative exploring A*
for path planning was developed. A quasi-reactive, wall-following agent serves
as a comparison basis and a simulation environment called ciber-rato was used
to test the implemented architecture and validate the developed methods within
gradually increasing difficult scenarios. Besides the reactive agent being
typically less time consumptive, the exploring architecture granted greater
consistency and robustness. The results also evinced the time-improvement of
using the exploring A* and the efficiency of this target localization method as
gradually converging to the real target position.

1 Introduction

Cyber-Mouse (Ciber-Rato) is a modality included in the “Micro-Rato” competition,
directed to teams interested in the algorithmic issues and software control of mobile
autonomous robots [1]. This modality is supported by a software environment, which
simulates both robots and a labyrinth [2]. The Cyber-Mouse has a body diameter of 1
mouse unit (Um) and seven available sensors although only two, user selectable, can
be used at any given time. The final purpose is to reach the cheese, identified by a
ground sensor and detectable through a direction providing beacon sensor visible
trough low walls. Mouse’s performance is evaluated through success on reaching the
cheese, the time it took and the number of collisions.

The cyber-mouse competition has been used, amongst other applications as a
testbed for long-term planning [3], as a scenario for the detection and avoidance of
dangerously shaped obstacles [4], or even as a tool for the teaching of Artificial
Intelligence and Robotics [5]. In this paper we evaluate the problems of mapping,
localization and path planning by building a deliberative agent that can find its way
from a starting position to the target without prior knowledge of the maze. Ultimately
this architecture’s performance is compared to a reactive approach.

The paper structure is as follows. The next section discusses the problems of
mapping and self-localization, navigation and path planning together with some

232 J. Certo, J.L. Oliveira, L.P. Reis

related state of the art algorithms leading to the chosen approaches. Section 3 presents
the developed methodologies. Section 4 contains a description of a comparative
reactive agent, the testing environments and the respective results. Finally, section 5
concludes this paper and points to future work.

2 Robotic Mapping and Planning Overview

Mapping is the process of building an estimate of the metric map of the environment
[6]. The mapping problem is generally regarded of most importance in the pursuit of
building truly autonomous mobile robots, but still mapping unstructured, dynamic, or
large-scale environments remains largely an open research problem.

Planning is the process of deciding which route to take based on and expressed in
terms of the current internal representation of the terrain. Typically this process
calculates the cost of each motion decision towards the target, based on a given
heuristics, and chooses the “cheapest” one.

2.1 Mapping and Localization Problem

To acquire a map, robots must possess sensors that enable it to perceive the outside
world. Sensors commonly brought to carry out this task include cameras; range
finders (using sonar, laser or infrared technology), radars, tactile sensors, compasses,
and GPS. However, all these sensors are subject to errors, often referred to as
measurement noise, and to strict range limitations.

So, considering these issues several different challenges can arise to robotic
mapping: statistically dependent sensors measurement noise, high dimensionality of
the entities that are being mapped, data association problem (determining if sensor
measurements taken at different points in time correspond to the same physical
object), environments changing over time and robot exploration.

The motion commands issued during environment exploration also carry important
information for building maps, since they convey information about the locations at
which different sensor measurements were taken. Robot motion is also subject to
errors and the controls alone are therefore insufficient to determine a robot’s pose
(location and orientation) relative to its environment. If the robot’s pose was known
all along, building a map would be quite simple. Conversely, if we already had a map
of the environment, there are computationally elegant and efficient algorithms for
determining the robot’s pose at any point in time. In combination, however, the
problem is much harder.

Considering the map representation problem, which has a significant impact on
robot control [7], we can account for three main methods: Free space maps (road
mapping), as spatial graphs, including Voronoi diagrams, and generalised Voronoi
diagrams; object maps; and composite maps (cell decomposition) as point grids, area
grids and quad trees.

Virtually all state-of-the-art algorithms for robotic mapping in the literature are
probabilistic. They all employ probabilistic models of the robot and its environment
relying on probabilistic inference for turning sensor measurements into maps [6].

 Intelligent Robotic Mapping and Exploration with Converging Target Localization 233

2.2 Navigation and Path Planning

In artificial intelligence, planning originally meant a search for a sequence of logical
operators or actions that transform an initial world state into a desired goal state [8].
Robot motion planning focuses primarily on the translations and rotations required to
navigate, considering dynamic aspects, such as uncertainties, differential constraints,
modelling errors, and optimality. Trajectory planning usually refers to the problem of
taking the solution from a robot motion planning algorithm and determining how to
move along the solution in a way that respects the mechanical limitations of the robot.

The classic path planning problem is then finding a collision-free path from a start
configuration to a goal configuration, in a reasonable amount of time, given the
robot’s body constitution and the map representation, as retrieved in the mapping
process.

In an unknown environment the mapping and motion planning must be processed
in parallel through exploration and dynamic navigation decisions. This structure
requires plans updating. A natural way of updating plans is to first select a path based
on the present knowledge, then move along that path for a short time while collecting
new information, and re-planning the path based on new findings.

Considering the application many algorithms have been proposed for path
planning: A and A Star (A*), Dijkstra, Best-First, Wavefront Expansion, Depth-First
Search, Breadth-First Search.

3 Exploring Agent Methods and Architecture

The architecture of our exploring agent is presented in four independent modules,
concerning the self-localization, target (goal) localization, mapping and navigation,
and path planning problem. These modules were integrated to solve various mazes
facing an unknown environment without any previous knowledge.

3.1 Self-Localization

The self-localization is based on the robots’ odometry which is defined by a dynamic
inertial movement model [9]. Due to Gaussian noise the simulator model induces a
linear motion maximum error given by Eq. 1.

� ≤ ��������	
��� ∗ �������������� + ����	���������� 2⁄��������	
��� �%� (1)

As such, for each position estimate there is a maximum δ deviation for the Cartesian
coordinates and 2*δ for the rotation angle. The simulator defines
Max(MotorPow)=0.15, NoiseDeviation=1.5% and MotorResolution=0.001; which
infers δ≈1.83% and a rotation error of 3.66%, acceptable for this application. In order
to correct cumulative odometry rotation errors, the compass is read every 50 cycles,
always accounting for the compass sensor latency of 4 cycles.

234 J. Certo, J.L. Oliveira, L.P. Reis

3.2 Target Localization

In order to define an initial plan of attack two methodologies were considered for
marking the initial targ
defines its disposition as being within any of the four map corners, changing every
user-defined number of cycles (usually 500) to one corner different from the former.
As soon as the beacon is vis
by intercepting the line defined by the mouse and the beacon points with the map
bounds. From the resultant 4 points the initial target position is considered as being
the convergent point (in th

A more accurate target position is recursively estimated by computing the centre of
mass resultant from successive triangulations;
within every 25 cycles, if the beacon is visible, a line Y
direction. In order to retrieve the real beacon direction,
beacon sensor’s latency of 4
former ones resulting in a conjunction of intercept points P
restrict these points to the ones converging to the target Eq.

�
� �

� �
� � !�"180

Fig. 1. Target localization from recursive triangulations (left to right): method overview
removing intercept points displaced from the mouse

All the points outside
intercept points, while the mouse moves towards the estimated target, every point
displaced from the mouse
more than 3Um from the current target estimate, are removed from the list.

J. Certo, J.L. Oliveira, L.P. Reis

3.2 Target Localization– Centre of Mass from Recursive Triangulations

In order to define an initial plan of attack two methodologies were considered for
marking the initial target position. If the beacon isn’t visible a random function
defines its disposition as being within any of the four map corners, changing every

defined number of cycles (usually 500) to one corner different from the former.
As soon as the beacon is visible an initial rough estimation of the target is calculated
by intercepting the line defined by the mouse and the beacon points with the map
bounds. From the resultant 4 points the initial target position is considered as being
the convergent point (in the beacon direction – see Eq. 2 closer to the mouse.

more accurate target position is recursively estimated by computing the centre of
from successive triangulations; as illustrated in Fig. 1. To achieve this,

within every 25 cycles, if the beacon is visible, a line YA is traced along the target
direction. In order to retrieve the real beacon direction, α, this process accounts
beacon sensor’s latency of 4 cycles. Each line is then intercepted with each of the
former ones resulting in a conjunction of intercept points Pi (Xi, Yi). In order to
restrict these points to the ones converging to the target Eq. 2 was applied:

� � !�"90° ' (' 90°�)�� *� + *,- 180° ' (' "90° .� 90° ' (' 180°�)�� *� ' *,-���� ��/���
�
0

Target localization from recursive triangulations (left to right): method overview
t points displaced from the mouse-target square, at a mouse position

All the points outside the map bounds are also filtered. After having 5
t points, while the mouse moves towards the estimated target, every point

displaced from the mouse-beacon square (see Fig. 1b), along with the ones distancing
from the current target estimate, are removed from the list.

12
3*4 � 56 *�

789:;<=
�>? @ �AB�CDEF

G4 � 56 G�
789:;<=
�>? @ �AB�CDEF 0

Centre of Mass from Recursive Triangulations

In order to define an initial plan of attack two methodologies were considered for
et position. If the beacon isn’t visible a random function

defines its disposition as being within any of the four map corners, changing every
defined number of cycles (usually 500) to one corner different from the former.

ible an initial rough estimation of the target is calculated
by intercepting the line defined by the mouse and the beacon points with the map
bounds. From the resultant 4 points the initial target position is considered as being

closer to the mouse.
more accurate target position is recursively estimated by computing the centre of

. To achieve this,
is traced along the target

, this process accounts for the
. Each line is then intercepted with each of the

). In order to

-0 (2)

Target localization from recursive triangulations (left to right): method overview (a);
target square, at a mouse position (b).

. After having 5 valid
t points, while the mouse moves towards the estimated target, every point

th the ones distancing

(3)

 Intelligent Robotic Mapping and Exploration with Converging Target Localization 235

Finally the target position, given by Eq. 3, is calculated as the centre of mass of the
intercept points in the given time. Whenever a new line, YA, is traced the target
position is re-calculated, granting a robust target estimation, which is enhanced as the
mouse moves towards the target.

3.3 Mapping

Our mapping algorithm is based on a deterministic model representing the distance to
an obstacle given the obstacle sensor value. The map is represented using a multi-
resolution quad-tree decomposition since this representation grants good performance
for this application, with low processing cost.

In the presence of an obstacle we used a quad-tree gridding to subdivide each of
the obstacle cells. Our quad-tree strategy uses an adaptive division depth to a deepest
cell size (granularity) of 0.1Um. Fig. 2 illustrates different granularities for different
known maps.

Fig. 2. Real map overlapped with quad-tree representation (left to right): RTSS06Final with
0.7Um depth (a); 2005Final with 0.1Um depth (b).

3.3.1 Obstacle Detection
The navigation and consequent mapping is based on the obstacles disposition along
the map. To calculate the robot’s distance to an obstacle relative to its sensor values, a
series of successive experimental measurements were taken as seen in Fig. 3.

Fig. 3. Obstacle distance distribution – obstacle sensor values in horizontal axis (units);
obstacle distance in vertical axis (mouse units) (from left to right): the full distribution (a);
distribution for sensor values ranging from 0.9 to 1.0 (b); distribution for sensor values ranging
from 1.1 to 4.5 (c).

236 J. Certo, J.L. Oliveira, L.P. Reis

Through linear regression
where d is the distance and

12
3 H � 4.1981�K – H � "0.0001�M � 0

These functions estimate the obstacle distance
a maximum error, δ, of 0.213
0.189Um for values in the

3.3.2 Obstacle Setting and
The sensor available in the cyber
60º, as depicted in Fig.

Fig. 4. Obstacle sensor coverage

As the furthest detectable obstac
from Eq. 4) for the maxim
obstacle between Y1 and Y
part of that space, a set of
order to assure that all cells are marked
generated. The points are placed along the arc defined by the distance to obstacle
minus a user defined safety distance (at lea
0.65Um). As the number of points depend both on this distance and the deepest cell
maximum width (w), the number of marked points

��H, ��
The previous method

solve this problem a sweeping mechanism
cells making them passable again
setting mechanism with the differ
obstacles), fixating d (user definable) and
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking
the same cells as blocked or passable.

An exemplar resultant

J. Certo, J.L. Oliveira, L.P. Reis

linear regression it was possible to obtain the following equation (Eq.
is the distance and x the sensor values.

 10.84�O � 8.1978� – 0.0403, � 0.9 ' � ' 1.00.0046�S " 0.0561�K � 0.3435�O " 1.095� � 2.2027 � 1.1 ' � ' 4.6H � 0.6, � � + 4.6
hese functions estimate the obstacle distance (from the mouse’s body centre)

, of 0.213Um for sensor values in the range of 0.9
for values in the 1.1-4.5 range.

Setting and Sweeping
available in the cyber-mouse simulation system has an aperture a

Fig. 4a.

Obstacle sensor coverage (a); quad-tree cells identified as obstacles (b

detectable obstacle has a distance of approximate 1.6Um
for the maximum x equal to 4.5Um. This corresponds to a possible

and Y2 (Fig. 4) of 1.6Um. As the detected obstacle can be in any
a set of cells between Y1 and Y2 are marked as an obstacle.

o assure that all cells are marked (depicted in Fig. 4b) a set of points is
generated. The points are placed along the arc defined by the distance to obstacle
minus a user defined safety distance (at least 0.5Um for the mouse body, but

As the number of points depend both on this distance and the deepest cell
), the number of marked points is given by Eq. 5:

� � �
1U2
U3V3 sinZ[\� 2⁄H]^ , � 2⁄H ' 1

1 , � 2⁄H _ 1
0

thod can lead to cells wrongly marked as obstacles. In order to
sweeping mechanism was developed to clean blocked (obstacle)

passable again. This mechanism is very similar to the obstacle
setting mechanism with the differences of marking passable cells (instead of

(user definable) and restricting the aperture of sweeping to half
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking
the same cells as blocked or passable.

An exemplar resultant internal map representation of the robot is shown in

it was possible to obtain the following equation (Eq. 4)

02027, (4)

(from the mouse’s body centre) with
0.9-1.0, and

has an aperture angle of

b).

m (derived
his corresponds to a possible

As the detected obstacle can be in any
are marked as an obstacle. So, in

a set of points is
generated. The points are placed along the arc defined by the distance to obstacle

but usually
As the number of points depend both on this distance and the deepest cell

(5)

can lead to cells wrongly marked as obstacles. In order to
blocked (obstacle)

. This mechanism is very similar to the obstacle
of marking passable cells (instead of

the aperture of sweeping to half
(30º). These restrictions were made so that the robot wouldn’t be cyclically marking

in Fig. 5.

 Intelligent Robotic Mapping and Exploration wi

Fig.

3.4. Path Planning -

To find a path between a previously computed objective and the agent, the A
(A*) algorithm is used.
with a guarantee of a solution.
representation, defining the shortest path towards the target by marking waypoints in
the correspondent map cell centres.

Eq. 6 represents the cost between the source point and the target poi
passes through node n.

Here g(n) is the real cost from the source to node
between node n and the target.
node n. The customary
the source and the target position.
as the cost for reaching a target, the robot would spend a great amount of time
mapping around the same obstacle. In order to solv
was developed where the waypoint cost is
quad-tree cell depth and

`��� �)

Fig. 6. Comparison of exploring algorithms:

This method assures
preferably following big cells.

Intelligent Robotic Mapping and Exploration with Converging Target Localization

Fig. 5. Robot internal map after solving a maze.

 Exploring A*

To find a path between a previously computed objective and the agent, the A
(A*) algorithm is used. This decision was made by balancing implementation cost
with a guarantee of a solution. This algorithm is implemented over the quad

defining the shortest path towards the target by marking waypoints in
the correspondent map cell centres.

the cost between the source point and the target poi
ode n.

 ��� � a��� � b���

is the real cost from the source to node n, and h(n) is the estimated cost
and the target. f(n) is the total cost of the path that passes through

. The customary heuristic function would be the Euclidean distance between
the source and the target position. However, when solely using the Euclidian distance
as the cost for reaching a target, the robot would spend a great amount of time
mapping around the same obstacle. In order to solve this problem, a different heuristic

where the waypoint cost is the Euclidian distance affected
tree cell depth and a weight (f), as defined in Eq. 7.

�), c� � �����), c� ��d�b�c�e , _ 1

Comparison of exploring algorithms: classic A*(a); Exploring A* (b

assures that the mouse explores the map, towards the beacon,
preferably following big cells. Consequently it increases the exploring step, as can be

th Converging Target Localization 237

To find a path between a previously computed objective and the agent, the A-Star
This decision was made by balancing implementation cost

uad-tree map
defining the shortest path towards the target by marking waypoints in

the cost between the source point and the target point, which

(6)

is the estimated cost
is the total cost of the path that passes through

Euclidean distance between
the Euclidian distance

as the cost for reaching a target, the robot would spend a great amount of time
a different heuristic

the Euclidian distance affected by the

(7)

b).

that the mouse explores the map, towards the beacon,
, as can be

238 J. Certo, J.L. Oliveira, L.P. Reis

seen in Fig. 6b, and the mouse
classic A* is maintained as the exploring A* would revert to passing
cells after exploring the larger cells.

3.5 Navigation and Control

The robot is controlled by following each waypoint centre given by the A* algorithm
towards the target. The robot rotates to each waypoint centre and accelerates in that
direction. The waypoint centre is considered reached if the robot’s coordinate values
are within a certain error margin of that centre.

The agent navigation speeds are dynamically adjusted and are dependent on
several factors. Simple control optimizations inc
there are big differences between the current angle and the waypoint direction or
increasing speed if a waypoint is far away. More advanced implemented speed
optimizations take into account subsequent waypoints and thei
order to further increase the mouse’ performance.

3.6 Visualization System

In order to visualize the current internal robot’s map representation, in real
visualization system was developed. This interface, shown in
upon the Java open-source JFreeChart API
its Cartesian disposition, extend this system to debugging purposes. As observable, 5
different series, with different colours, were designed; each representing an individual
estimation: pink for the mouse posit
red for the obstacle’s cell centres, blue for the passable cell centres, green for the
planned path, and black for the current beacon estimation.

Fig. 7. Visualization system for different, incremental, zoom levels.

4. Experiments and Results

In order to test and validate the proposed approach, this section is divided in three: a
presentation of a reactive agent architecture serving as a comparative base
description of different evaluation scenarios and a presentation of the results.

J. Certo, J.L. Oliveira, L.P. Reis

and the mouse’s velocity. The guarantee of solution given by the
classic A* is maintained as the exploring A* would revert to passing trough small
cells after exploring the larger cells.

3.5 Navigation and Control

The robot is controlled by following each waypoint centre given by the A* algorithm
towards the target. The robot rotates to each waypoint centre and accelerates in that

ection. The waypoint centre is considered reached if the robot’s coordinate values
are within a certain error margin of that centre.

The agent navigation speeds are dynamically adjusted and are dependent on
several factors. Simple control optimizations include a speed increase in rotation if
there are big differences between the current angle and the waypoint direction or
increasing speed if a waypoint is far away. More advanced implemented speed
optimizations take into account subsequent waypoints and their relative direction in
order to further increase the mouse’ performance.

3.6 Visualization System

In order to visualize the current internal robot’s map representation, in real
visualization system was developed. This interface, shown in Fig. 7, was designed

source JFreeChart API [10]. Its zooming capabilities, as well as
its Cartesian disposition, extend this system to debugging purposes. As observable, 5
different series, with different colours, were designed; each representing an individual
estimation: pink for the mouse position, yellow for the initial (attack) beacon position,
red for the obstacle’s cell centres, blue for the passable cell centres, green for the
planned path, and black for the current beacon estimation.

Visualization system for different, incremental, zoom levels.

4. Experiments and Results

In order to test and validate the proposed approach, this section is divided in three: a
presentation of a reactive agent architecture serving as a comparative base
description of different evaluation scenarios and a presentation of the results.

The guarantee of solution given by the
trough small

The robot is controlled by following each waypoint centre given by the A* algorithm
towards the target. The robot rotates to each waypoint centre and accelerates in that

ection. The waypoint centre is considered reached if the robot’s coordinate values

The agent navigation speeds are dynamically adjusted and are dependent on
lude a speed increase in rotation if

there are big differences between the current angle and the waypoint direction or
increasing speed if a waypoint is far away. More advanced implemented speed

r relative direction in

In order to visualize the current internal robot’s map representation, in real-time, a
, was designed

. Its zooming capabilities, as well as
its Cartesian disposition, extend this system to debugging purposes. As observable, 5
different series, with different colours, were designed; each representing an individual

ion, yellow for the initial (attack) beacon position,
red for the obstacle’s cell centres, blue for the passable cell centres, green for the

In order to test and validate the proposed approach, this section is divided in three: a
presentation of a reactive agent architecture serving as a comparative base, a
description of different evaluation scenarios and a presentation of the results.

 Intelligent Robotic Mapping and Exploration with Converging Target Localization 239

4.1 Reactive Agent Architecture

Although this quasi-reactive (wall-following) architecture isn’t the focus of this paper,
it is well suited to serve as a comparative base for results evaluation. The designed
reactive agent consists on a behaviour-based state-machine.

When the simulation starts, the robot begins with the state Find Beacon, rotating
the robot around itself until it finds the beacon, or walking randomly until a wall is
found. When the beacon is found, the robot changes its state to Follow Beacon and
goes forward until it reaches the ground beacon area or finds a wall. If the beacon is
reached, the state changes to Beacon Area Reached and the simulation ends. On the
other hand, if a wall is found instead, the robot changes state to Change Direction,
rotating itself to the side which has no detectable walls. Once the robot stops detecting
a wall directly in front, it changes to the state Follow Wall. On this state the robot
simply goes forward until it stops detecting the side wall. When it stops detecting the
side wall, or detects another wall in front it changes back to the Find Beacon state.

Besides the state, two additional non-reactive elements were included: the time
since the mouse was near a wall and a memory of the relative side of the wall being
followed. The notion of time allowed the mouse to wander randomly to a wall when
no beacon is found (high-walls) and to maintain a direction for a short time after
leaving the wall. Remembering the wall being followed allowed the avoidance of a
problem where the robot would cyclically alternate between close opposing walls.

4.2 Evaluation Scenarios

In order to evaluate each experiment the following, gradually increasing difficult
scenarios, were chosen.

Fig. 8. Evaluation maps (from top-left to bottom-right): Basic (a); MicRato98 (b); 2001Final
(c); RTSS06Final (d); 2005Final (e).

As can be seen in Fig. 8: the Basic map has a small wall between the mouse and
the beacon (a); MicRato98 is an easy map with only low walls (b); 2001Final, a
medium difficulty map with only low walls (c); RTSS06Final, a hard map with low
and high walls (d); 2005Final, a very hard map with low and high walls (e).

240 J. Certo, J.L. Oliveira, L.P. Reis

The evaluation was done by observing if the mouse reached the cheese or not and
the time it took to do it. For the exploring agent, since collisions impose errors in the
self-localization procedure which would make the robot fail the waypoints (given by
A*) towards the target, the number of collisions weren’t considered. Additionally,
when relevant, an observational description of the mouse’ behaviour during the
experiment may be included to further evaluate and compare the approaches.

4.3 Results

Each map was tested with the two described maze solving experiments. For results
comparison, in both experiments the tests were made with two self-localization
systems: through odometry measurement (see 3.1) and with GPS. Different deepest
cell’s maximum sizes (considered in the quad-tree decomposition) were used: a fixed
resolution of 0.1Um that guarantees map solving (for the maximum 1.5Um obstacle
distance) and one variable, granting the best performance for each map. Since the
simulator adds some noise in the sensors and actuators, three different runs for each
map and agent were performed. As such, conclusions can be made from averaging the
results and thus overcoming the stochastic nature of the simulator.

4.3.1. Maze solving in an Unknown Map - Reactive Agent Evaluation
In this experiment we tested our (quasi-)reactive agent, Smart-Follower, for paradigm
comparison. The results are shown in Table 1.

Table 1. Experimental results for the Smart-Follower agent.

The enclosure conflict happens when the mouse is surrounded by obstacles very
close to each other. Although the side sensors detect an obstacle there was enough
room for the mouse to pass. The wall-beacon happens when the mouse is near a U-
shaped wall. At each wall end the mouse turns towards the beacon coincident with the
obstacle centre. As such, the mouse follows the same wall in the opposite direction.

4.3.2 Exploring Agent Evaluation
The following Table 2 then presents the exploring agent performance in resolving the
proposed evaluating scenarios, for the self-localization and GPS methods. In order to
visually depict the agent’s deliberations, namely its mapping, planning and target
estimation abilities, while solving some of the tested mazes (and as proof of concept),
Fig. 9 presents some screen shots of a successful experiment.

 Intelligent Robotic Mapping and Exploration wi

Fig. 9. Exploring agent runs on

Table 2. Exploring Agent Map Results.

In this experiment the corner collision is self
collisions at the obstacles’ corners level. We found some problems at solving the
Final2005 and the MicRato98
at the lowest margin (1.5
mapping methodology limitations.

5. Conclusions and Future Work

As observable in the quasi
deliberations can quite effectively reso
1) and situations with simple algorithms.

During the simulations, the localization method gradually con
target position as the new measurements add points clustering around the beacon
resulting in a better centre of mass that gives a better beacon estimative.

The initial approach of using
As an example, comparing to
the agent using classic A* was still very far from the
exploration very close to obstacles
eventually allow the agent to reach the beacon

GPS

Odometry

GPS

Odometry

GPS

Odometry

GPS

Odometry

GPS

Odometry
Map5 - 2005Final

Map1 - Basic

Map2 - MicRato98

Map3 - 2001Final

Map4 - RTSS06Final

Unknown Map

Intelligent Robotic Mapping and Exploration with Converging Target Localization

runs on RTSS06Final map (from left to right): GPS (a); Odometry

Exploring Agent Map Results.

In this experiment the corner collision is self-explanatory as representing the
collisions at the obstacles’ corners level. We found some problems at solving the

MicRato98 maps due to the distance between walls, which is kept
t margin (1.5Um) in many situations, blocking the mouse, due to its

mapping methodology limitations.

5. Conclusions and Future Work

As observable in the quasi-reactive experiment (4.3.1), approaches featuring some
deliberations can quite effectively resolve most of the simpler maps (first 3 in
) and situations with simple algorithms.

During the simulations, the localization method gradually converges to the real
target position as the new measurements add points clustering around the beacon
resulting in a better centre of mass that gives a better beacon estimative.

The initial approach of using classic A* was too time consuming to be practical.
As an example, comparing to the worst time from Table 2 in Map 4 (10234 cycles)
the agent using classic A* was still very far from the target, due to navigati

very close to obstacles. Nevertheless we believe that classic A*
allow the agent to reach the beacon. As such, using the exploring A* with

1 2 3 Average Success.

Time Time Time Time Exp.

260 658 562 493 3 NA

Odometry 260 364 682 435 3 NA

2544 NA 2634 2589 2 Corner Collision

Odometry NA 2328 NA 2328 1 Small Obstacles' Aperture

3432 2598 NA 3015 2 Corner Collision

Odometry NA NA 4266 4266 1 Corner Collision

10234 7322 NA 8778 2 Corner Collision

Odometry 5344 5546 6954 5948 3 NA

NA NA NA NA 0 Small Obstacles' Aperture

Odometry NA NA NA NA 0 Small Obstacles' Aperture

Observations

Experiments

th Converging Target Localization 241

dometry (b).

explanatory as representing the
collisions at the obstacles’ corners level. We found some problems at solving the

maps due to the distance between walls, which is kept
) in many situations, blocking the mouse, due to its

reactive experiment (4.3.1), approaches featuring some
lve most of the simpler maps (first 3 in Table

verges to the real
target position as the new measurements add points clustering around the beacon,

be practical.
in Map 4 (10234 cycles),

navigation and
classic A* would

using the exploring A* with

NA

NA

Corner Collision

Small Obstacles' Aperture

Corner Collision

Corner Collision

Corner Collision

NA

Small Obstacles' Aperture

Small Obstacles' Aperture

Observations

242 J. Certo, J.L. Oliveira, L.P. Reis

an f factor of 1.2 (trial-error adjust) lead to a great time improvement. Yet, in worst
case scenarios, with large clusters of small obstacles, the exploring A* can take longer
but still guarantees a solution.

In comparison to the reactive agent, the exploring mouse evinced better map
solving capabilities. In terms of consistency, results with the exploring agent were
more favourable as it was capable of repeatedly solving the same maps (Basic,
2006Final and 2001Final – Table 2), contradicting the reactive mouse’s behaviour
(Basic and MicRato98 in Table 1). This was possible due to the exploring agent’s
abilities to bypass U-shaped obstacles and recognizing its position, thus leaving
already explored areas.

As a limitation, for the maps that the reactive agent could solve, the time taken for
the exploring agent to conclude each map (except for the Basic map) was greater than
with the reactive implementation. This was to be expected as map navigation (cell
marking) isn’t as effective as sensor navigation (wall following).

Within the reactive agent when comparing odometry to GPS navigation (Table 2)
we conclude that the GPS’s had a superior rate of success but odometry was more
time effective. Besides the less need for adjustments to reach the cell centre, the
reason for time effectiveness of odometry is the small error in obstacle detection that
eliminates some hysteresis caused by setting and sweeping obstacles.

In the future the use of both lateral proximity sensors along with a probabilistic
model for obstacles' detection should greatly improve the mapping efficiency.
Parameters like the exploring weight, sensor apertures for marking and cleaning
obstacles, distance for cleaning obstacles can be set to optimal by using reinforcement
learning mechanisms. The maximum cell depth can also be dynamically adjusted
using a greedy algorithm, like hill-climbing, in order to improve performance.

References

[1] Almeida, L., Fonseca, P., Azevedo, J.L.: The Micro-Rato Contest: a popular approach to
improve self-study in electronics and computer science. SMC'2000, IEEE Int. Conference
on Systems, Man and Cybernetics, Vol. 1, Nashville, USA (2000) 701 – 705.

[2] Lau, N., Pereira, A., Melo, A., Neves, A., Figueiredo, J.: Ciber-Rato: Um Ambiente de
Simulação de Robots Móveis e Autónomos. Revista do DETUA 3 (2002) 647 - 650.

[3] Ribeiro, P.: YAM (Yet Another Mouse) - Um Robot Virtual com Planeamento de
Caminho a Longo Prazo. Revista do DETUA 3 (2002) 672-674

[4] Luís, P., Martins, B., Almeida, P., Silva, V.: Detecção de Configurações de Obstáculos
Perigosas: Aplicação no Robô EnCuRRalado. Revista do DETUA 3 (2002) 659-661.

[5] Reis, L.P.: Ciber-FEUP - Um Agente para Utilizar o Simulador Ciber-Rato no Ensino da
Inteligência Artificial e Robótica Inteligente. Revista do DETUA 3 (2002) 655-658.

[6] Thrun, S. – Robotic Mapping: A Survey CMU-CS-02-111 (2002).
[7] Murphy, R.R.: An Introduction to AI Robotics. Bradford Book, MIT Press : Cambridge,

Massachussets, London England (2000)
[8] LaValle, S.: Planning Algorithms. Cambridge University Press, 2006.
[9] Lau, N., CiberRato 2008 Rules and Technical Specifications, online at:

http://microrato.ua.pt/main/Docs/RegrasMicroRato2008_EN.pdf accessed 15 April 2009.
[10] Gilbert, D.: The JFreeChart Class Library Reference Documentation. Simba Management

Limited (2002) 158.

