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Abstract. The paper considers a set of heuristic search algorithms for the Bicri-
terion Shortest Path Problem. These are presented as particulaotase®re
general algorithm. Their performance is evaluated over a randobiemnoset
using two general heuristic functions proposed by Tung & Chew (1998) ex-
perimental results show that the heuristics reduce the space requiseoi¢ime
algorithms considered. One contribution of this paper is to show that, egntra
to intuition, no improvement in time performance is achieved in these cgses b
using heuristics. In fact, one of the heuristics appears to work agairesteiiin
ciency. The paper provides also an explanation to the observed phaaand
points out possible lines of improvement.

1 Introduction

Heuristic search in Shortest Path Problems is a centraldiedtlidy in Artificial Intel-
ligence. The A algorithm [1] [2][3] is an efficient solution for the case of admissible
graph search guided by single-objective heuristic evalodtinctions.

The Bicriterion Shortest Path Problem (BSP) is an extensfahe Shortest Path
Problem with practical applications in different domaiiige routing in multimedia net-
works [4], route planning §] satellite schedulingd], or domain independent planning
[7]. BSP problems require the evaluation of two different aratjfiently conflicting
objectives for each alternative. These problems rarelg lzasingle optimal solution.
Most frequently, a set aiondominatedPareto-optimal) solutions can be found, each
one presenting a particular trade-off between the objestiinder consideration. The
number of nondominated solutions in BSP problems is knowgrésy exponentially
with solution depth in the worst cas8]] Fortunately, several classes of interesting
multiobjective problems do not exhibit this worst-casedgbr [9].

The Artificial Intelligence and Operations Research comitieshave contributed
several extensions of the A* algorithm to the multiobjeetoase. These include Tung-
Chew [10], MOA* [ 11], and NAMOA* [12]. One of the fundamental differences be-
tween these algorithms is their path/node selection gfiegeThe selection strategy of
NAMOA* was shown to have better formal properties than tHa¥l@A*, and to im-
prove in space requirements both formally and empiricdlBj [13]. However, to the
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author’s knowledge, there are no results comparing theopaeince of the heuristic
selection strategies of NAMOA* and Tung-Chew.

The work of Tung & Chew 10] described also two general heuristic functions for
multiobjective shortest path problems. The real impactheké heuristic functions in
algorithm performance has never been tested with empiesallts. This paper consid-
ers a general bicriterion search procedure that encomphstie NAMOA* and Tung-
Chew. The impact of Tung and Chew'’s heuristics in the timespate requirements of
several particular instances of this procedure is evaduaver a random problem set.
Several of the algorithms considered exhibit a similar ofidn in space requirements
when compared to uninformed search. However, contraryttition, no improvement
in time performance is achieved. In fact, one of the hewesstonsidered seems to work
against time efficiency. The paper provides an explanatidhé observed phenomena
and points out possible lines of improvement.

The structure of the paper is as follows. Secttantroduces some common termi-
nology useful to understand BSP problems and a descripfitredeuristics analyzed
in the paper. It also describes a general multiobjectivecbejprocedure that helps to
identify the four particular algorithms used in the expegitts. Sectiof3 describes the
experimental setup, and analyzes the space and time rewgiite of the algorithms
considered. An adequate explanation of the observed phemem presented. Finally
some conclusions and future work are outlined.

2 Algorithms

2.1 Bicriterion Shortest Path Problems

Let us consider twg-dimensional vectors, v’ € R?. A partial order relation< de-
nominateddominances defined as followsy < o’ iff Vi(1 < i < ¢) v; < v} and
v # v’, wherev; denotes the i-th component of vectar

Given twog-dimensional vectors andv’ (whereq > 1), it is not always possible
to say that one is better than the other. For example in a bitéional cost space vector
(2,3) dominateg2, 4), but no dominance relation exists betwgen3) and(3, 2).

Given a set of vectorX’, we shall definewd(X ) as the set of non-dominated vectors
inX,i.e,ndX)={xcX|fyeX y=<z}

A total order relation<; denominatedexicographic orders defined as follows,
v =< v iff for somej, v; < vjandVi < j, v; = vj. A useful property of the
lexicographic order is that the lexicographic optimum ireacf vectors is also a non-
dominated vector.

Let G be a locally finite labeled directed graph= (IV, A, ¢) with | N| nodes and
|A| arcs(n, n") labeled with positive vectors(n, n’) € R?. The cost of a path is defined
as the sum of the costs of its arcs; obviously, the cost offaipat;-dimensional vector.
A multiobjective search problem if¥ is stated as follows:

Given a start node € N and a set of goal nodds C N, find the set of alhon-
dominatedpathsP in G, i. e., the set of all path® such that

i) P goes froms to a node inl’;

ii) the cost of P is non-dominated by the costs of any other path satisfying i)
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The Bicriterion Shortest Path Problem (BSP) is a particcéese of MSP in which
q = 2, 1. e., arc costs have two real components.

2.2 A general algorithm

The general algorithm ran in the experiments reported sghper, is presented in table
1. This algorithm is a slight generalization of NAMOAL2]. In fact, the only difference
with NAMOA* lies in step 3. This difference will be explained in subsmtf.4.

The main features of the algorithm are as follows:

— The algorithm uses an acyclic search gré&fghto record interesting partial solution
paths. For each nodein SG two sets —&;(n) andG,,,(n)— denote the sets of
non-dominated cost vectors of paths reachirigat have or have not been explored
yet respectively (i.e. closed or open). Each cost vectohésé sets labels one or
more pointers emanating fromto its parents with that cost. Initially, is the only
node inSG.

— The algorithm keeps a lisDPEN of partial solution paths that can be further
expanded. For each noddan SG and each nondominated cost vegoe G, (n)
there will be a corresponding labet, g, F(n,g)) in OPEN. Initially, the tuple
(s,g9s, F(s,gs)) is the only label "D PEN. Notice that contrary to what happens
in single-objective search, many different nondominatathg may reach a given
node. Therefore, it is the number of cost vectors stored,j(n) andG.;(n) what
determines memory requirements, while the number of noldgs p minor role.

— Ateach iteration the algorithm will consider the extensiban open labeln, g, F)
that stands for a partial solution path franto n with costg.

— Two sets - GOALN andCOSTS— record all goal nodes reached and all non-
dominated cost vectors to goal nodes respectively. Oncduigois known, its
cost vector can be used to discard (filter) dominated opexidab

— Search terminates only when thePE N list is empty, i.e. when all open labels
have been selected or filtered.

— Heuristic estimates will normally involve a set of vectdign) for each noden.
These vectors estimate the costs of nondominated pathsifitoneach goal node.
Let g(P) be the function that returns the cost of pathdefined by the sum of
the costs of all its component arcs. Therefore, for each patifrom s to n with
costg(Ps,) = gp, there will be a set of heuristic evaluation vectéi&P;,, ). This
function is the multiobjective analogue ¢in) in A*, F(Ps,) = F(n,gp) =
nd({f | f =gp+h Ah € H(n)}). In this paper, we will consider the situ-
ation whereH (n) = {h(n)}, i.e., there is only one vector estimaie Therefore

F(Psn):{f}vf:g+h'

2.3 Heuristic functions

The main goal of this paper is the comparative study of théopmance of the general
algorithm when instantiated with some heuristic functiofisree heuristic functions
will be considered.
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1. CREATE:
— An acyclic search grapBG rooted ins.
— List of alternativesOPEN ={(s, gs, F(s,9s)) }.
— Two empty setsGOALN, COSTS.
2. CHECK TERMINATION. If OPEN is empty, then backtrack ifG from the nodes in
GOALN and return the set of solution paths with cost€i@ST'S.
3. PATH SELECTION. Select an alternatiye, g., F') from OPEN. Delet&n, g,,, F') from
OPEN, and moveg,, from G, (n) to G (n).
4. SOLUTION RECORDING. Ifn € I, then
— Includen in GOALN andg,, in COST'S.
— Eliminate fromOPEN all alternativegz, g.., F%:) such that all vectors i, are dom-
inated byg,, (FILTERING).
— Go back to ste
5. PATH EXPANSION: Ifn ¢ I, then
For all successors nodes of n that do not produce cycles i#G do:
(a) Calculate the cost of the new path founditog,, = g, + ¢(n, m).
(b) If misanew node
i. CalculateF,, = F'(m, gm) filtering estimates dominated yOST'S.
ii. If F,,isnotempty, putm,gm, F,)in OPEN, and putg,, in G,,(m) labelling
a pointer ton.
iii. Go to step2.
else (n is not a new node), in case
— gm € Gop(m) Or gm € Gei(m): label withg,,, a pointer ton, and go to steja.
— If g., is non-dominated by any cost vectorsah,(m) U G (m) (a path tom
with new cost has been found), then :
i. Eliminate fromG,,(m) andG.;(m) vectors dominated by,
ii. CalculateF,, = F(m,gn) filtering estimates dominated yOST'S.
iii. If F,, is not empty, putim,gm, Fin) in OPEN, and putg,, in Gop(m)
labelling a pointer to.
iv. Go to step2.
— Otherwise: go to step.

Table 1. A general multiobjective search algorithm.

When no heuristic information is available, the trivial histic function is given by
ho(n) = 0, for all nodesn.

Tung and Chew10] proposed two nontrivial heuristic functions that are was
fined for every Bicriterion Path Problem. The first heuri$twill be called in this paper
hi2(n) = (hi(n), h2(n)) and is computed as follows: consider a graph(: = 1, 2)
with same nodes than the given gragtand arcs reversed. For each &t n) in G; a
scalar cost is defined, given by théh component of the cog{n, n’) in G. Then apply
Dijkstra’s algorithm [L4] to this graph to find the shortest path from a terminal nobde
to the usual starting node breaking the ties by a lexicographic order. In this way, we
compute for each node, a valueh;(n), that is, the cost of the “best” path fronto n
(i. e., fromn to t), considering only thé-th component of the cost. It is obvious that

1 Tung and Chew 0] call this heuristicg.
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the vectorial heuristit12(n) = (h1(n), ha(n)) is optimistic, i. . 12(n) < f*(n) for
every noden.

The second heuristicproposed by Tung and Chew will be called in this palpgr,
and is defined in a similar way, as the result from applyind®ip’s algorithm to the
graph resulting from reversing every arc, but the cost is th@sum of the components
of the cost of the original graph, i. e., ane’, n) is labeled withe(n’, n) = >~ ¢;(n,n’).
Notice thath,,,;,. IS a scalar heuristic.

| Algorithm [ Selection rule |Additional selection rulp Filtering criteria |

NAMOA-LEX-HO bestg lex order g dominated |

NAMOA-LEX bestg + hi- lex order g + hi; dominated

TC-BS best_, g; g + h1z dominated

TC-HS besthmiz + >, gi g + hi1> dominated
Table 2.Instantiations of the general algorithm.

2.4 Instantiation of the general algorithm

Heuristic functionsh(n) do not appear explicitly in the pseudocode in tablelowever,
there are four points whete(n) is implicitly invoked:

— Step 3, PATH SELECTION. Usually the node selected fl@RENIs hon-dominated
according to certain heuristic function.

— Step 4, SOLUTION RECORDING (filtering). All alternatives:, g.., F,), such
that all vectors inF,, are dominated by the cogt, of a newly found solution,
are eliminated fronOPEN Since we are assuming that there is just an element
fz € Fy., fo = g2 + h,, the heuristic function also plays a role at this step.
ing the step PATH EXPANSION. Filtering depends on the valfeB, and hence
on the values of the heuristic functidn

Algorithm NAMOA* [ 12] is just the algorithm of tablé when the same heuristic
function is applied both for path selection (step 3) and fiberfng. Sinceh,,;, is a
scalar function, it could not be sensibly used for filterifierefore, considering the
heuristic functions defined in subsecti@drB, there will be two instances of NAMOA:
blind NAMOA* (with hg for selecting and filtering) and informed NAMOA* (with
h+, for selecting and filtering). In both cases, the selectiamtedure of step 3 could be
stated as follows:

PATH SELECTION (version A). Select an alternatiye, g.,, { f}) from OPEN
such thatd(n/, g, {f'}) € OPEN | f' < f.

2 Tung and Chew1(] call this heuristic with the somewhat confusing nalrie
3 Notice that the originadlgorithmproposed by Tung and Chew(] does not perform all these
filtering operations, or performs them in a different way
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In other words, a nondominateflis selected from OPEN. This guarantees admis-
sibility [12]. But this rule is not enough to determine the selected pagbally there
are many nondominatefl in OPEN. An additional rule is needed. The original de-
scription of NAMOA* [12] suggests LEX, the lexicographical order, as a suitabke rul
Therefore, we consider two instantiations of the genegdrithm with version A of
path selection: NAMOA-LEX-HO (blind NAMOA-LEX) and NAMOALEX (informed
NAMOA-LEX).

If path selection is not dictated by the same heuristic flonctised for filtering,
other possibilities appear. Tung and CheMi|[proposed the following selection rule
that uses the,,,;,, heuristic (preserving, for filtering):

PATH SELECTION (version B). Select an alternatie, g,,, { f}) from OPEN
such that/(n’, g,.-, { f'}) € OPEN, it holds that,,,;» + >, gi < hii0 + D, i

The corresponding instance of the algorithm will be call&gtHS (for Tung &
Chew with Heuristic Selection).

In order to evaluate the impact of thg,;, heuristic, we shall consider an additional
blind selection rule:

PATH SELECTION (version C). Select an alternati¢e g.,, { f}) from OPEN
such that/(n’, g,,-, { f'}) € OPEN, itholds thad_, g; < ", g;.

It is easily proven that minimizing , ¢; yields a nondominategf,(just consider
thatho(n) is used for selection). Since this rule is a “blind” versidrtat in Tung and
Chew [L0], the corresponding instance of the algorithm will be cll€€-BS (for Tung
& Chew with Blind Selection).

Table2 sums up the features of the four algorithms studied in thieepa

3 Empirical evaluation

Bidimensional square grids without obstacles were useddbthe algorithms. Biob-
jective cost vectorgc;, co) were generated for each arc. The valugs:; were inde-
pendently and randomly generated from a uniform distrdsutf integer values in the
rangel1, 10]. Ten different sets of grids with sizes frarfi x 10 to 100 x 100 were gen-
erated. The results presented for each size are averagetheuen different test sets.
Search was conducted in all of the problems from one cornidweagrid to the opposite.
Therefore, solution depth varies from 20 to 200 in steps off2@ results discussed in
the following describe the number of iterations, space,tand requirements of each
algorithm as a function of grid size.

The tests were run on a Windows XP 32-bit platform, with arlli@ore2 Quad
Q9550 at 2.8Ghz, and 4Gb of RAM. The algorithms were impleegtto share as
much code as possible, using the LispWorks Professionalgr@yramming environ-
ment. Nevertheless, important differences are needed.iBfmrmed and blind NAMOA-
LEX share all their code and only differ in the heuristic ftion provided. The7,, sets
were ordered lexicographically. Both TC-HS and TC-BS stase all of their code.
However, the,,, sets were ordered according to their respective lineauatiah func-
tions. In all implementations, only the current best cosheate of each node was kept
in OPEN at each iteration, as suggestedig] TheOPEN list was implemented as
a binary heap.



An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems211

x 10°
2k

—%— Blind searches (NAMOA-LEX-HO0, TC-BS)
—+— Heuristic searches (NAMOA-LEX, TC-HS)

10r

Labels in the search graph
[}

0_ 1 1 1 1 1 J
20 40 60 80 100 120 140 160 180 200

Solution Depth

Fig. 1. Iterations/Space requirements at different solution ligpaveraged over ten
problem sets.

3.1 Number of iterations and space requirements

Most analysis of heuristic search algorithms concentratdhe number of iterations as
a measure of their complexity. Figuteshows the number of iterations of the algorithms
as a function of grid size. Both heuristic searches (NAOMBXLand TC-HS) obtained
undistinguishable results. NAMOA-LEX and TC-HS exhibitiarportant reduction in
the number of iterations (i.e labels considered) when coeatpaith blind NAMOA-
LEX-HO and TC-BS. Again, blind searches (NAMOA-LEX-HO an€-BS) obtained
indistinguishable results. The reduction in the numbetterfiions using heuristics is
on average 45%. The number of labels stored in the search grapfound in all cases
to equal the number of iterations. This is not surprisinggsithe label expanded by
the algorithms at each iteration is permanently storedénih sets. Therefore, space
requirements grow fast with solution depth. The number afasan each gridi{ x n)
is comparatively much smaller than the total number of lsbel

This is an important result for the heuristics under corsitien, since most ap-
plications of bicriterion search described in the literatteport difficulties with space
requirements.
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Fig. 2. Time requirements at different solution depths, averaged ®n problem sets.

3.2 Time requirements

A first conclusion from the experiments is that the time nele@decalculate the heuris-
tic values is not significant compared to total executioretiess than 5% on average,
and less than 1% in the largest problems). This is due to tttettiat the single ob-
jective search runs, used to precompute the heuristic ¥ahs/e much smaller time
requirements than bicriterion search.

Time requirements of all algorithms are shown in figRr€ontrary to intuition, the
experiments do not show the decrease in time that could exteghbfrom the reduction
in the number of iterations of the NAMOA-LEX and TC-HS algbms. NAMOA-LEX
has requirements similar to those of uninformed NAMOA-LER-in spite of the fact
that the number of iterations is much smaller. Surprising{y-BS takes significantly
less time than TC-HS. In fact, TC-BS was the fastest algoritind TC-HS the slowest.
It is obvious from these results that search time cannot biéyeaxtrapolated from the
number of iterations. This is due to the fact that in bicr@ersearch, label expansion is
by no means an atomic constant-time operation.

Bicriterion search algorithms share with scalar ones abdity in time per iteration
due to the need to sort open alternatives. In bicriterionckethe number of open alter-
natives is low at the beginning and end of the search, anddugte time in between.
Additionally, each new label selected for expansion geresra number of successor
labels that need to be checked for dominance with the labeleiG,,(n) andG.(n)
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Fig. 3. Number of iterations vs. time for a particular search proble

sets of the destination node as well as the set of nondominated labels found to the
goal nodes (i.e. those kept in ti&ST'S set). Particularly, the size adfOST'S can
grow rapidly with solution depth. Therefore, the costly doamce checks used in the
time requirements.

Our analysis reveals that time per iteration is highly inflced by the number of
solutions already found at each iteration (i.e. the sizéneftOST'S set at that time).
Figures3 and4 illustrate the behavior of the algorithms for one particydeoblem of
size 100 x 100. Figure 3 shows that both TC-BS and NAMOA-LEX-HO performed
the same number of iterations in this problem. However, T&g@rformed a roughly
constant number of iterations per second and abruptly slaweevn at the end, while
NAMOA-LEX-HO slowed down more gradually and finally took neotime to finish.
Notice that TC-HS and NAMOA-LEX performed less iteratioharn the previous algo-
rithms, but required more time per iteration from the begignspecially TC-HS. The
result is that these algorithms were slower while solving $ame problem instance.
Similar behaviour was found in all cases analyzed.

The explanation of this behavior can be found in figdwdll algorithms found the
same number of solutions. However, TC-BS found the solatiarthe final seconds
of search, coincidentally with the abrupt descent of iiereg per second observed in
figure3. In a similar way, NAMOA-LEX-HO found solutions more gradlyebut also in
the final search stage, resulting in the second fasteshattee. NAMOA-LEX found
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Fig. 4. Number of nondominated solutions found vs. time for a paliicsearch prob-
lem.

solutions even faster and was therefore slower. FinallyHBCfound solutions very
quickly and was the slowest algorithm.

Figure5 shows the time taken by each algorithm to find filn& solution as a func-
tion of solution depth averaged for all problem sets. Aga®;BS is the algorithm that
starts to find solutions later, followed by NAMOA-LEX-HO. BoNAMOA-LEX and
TC-HS find solutions very early and appear undistinguishabthis scale.

4 Conclusions and future work

The paper presents a general bicriterion search procedatreticompasses NAMOA*
and Tung-Chew. This formal contribution highlights thefeliénces between these al-
gorithms and allows a clear comparison of different altévea.

The effect of the heuristic functions proposed by Tung aneMClvas evaluated em-
pirically over four instances of the general search proce¢lC-HS, TC-BS, NAMOA-
LEX, and NAMOA-LEX-HO0). Several important conclusions damdrawn. In the first
place, the experiments confirmed that the time needed talegdcthe heuristics is not
significant compared to total execution time. The heusstiere also found to improve
the number of iterations, reducing the space requiremdntiseoalgorithms. The re-
duction of space requirements was similar in TC-HS (whiadus combination of two
heuristic functions) and NAMOA-LEX (which used only one bétheuristic functions).
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Fig. 5. Time requirements to reach the first solution averaged dijprablem sets.

However, contrary to intuition, no time improvement coudibserved in the algo-
rithms with informed selection over the uninformed onese Sheed of the algorithms
was found to be related to the discovery of nondominatedisolst Those algorithms
that found solutions later in the search performed condistéaster. In this sense, the
use of a specialized selection heuristic in TC-HS was fowngdrk against the time
efficiency of the algorithm.

The use of heuristics can effectively reduce the number n$idered alternatives
in bicriterion search algorithms. Most practical implertaions of current algorithms
perform linear or lexicographic orderings for label sdl@tt The results presented in
this paper suggest that the investigation of alternatidengs that combine heuristic
search and delayed expansion of solutions could lead to efficeent algorithms.

References

1. Hart, P, Nilsson, N., Raphael, B.: A formal basis for the heurigtemination of minimum
cost paths. IEEE Trans. Systems Science and Cybernetics 3%988) 100-107

2. Pearl, J.: Heuristics. Addison-Wesley, Reading, Massachus@g4)(1

3. Dechter, R., Pearl, J.: Generalized best-first search strategi¢iseaoptimality of A*. Jour-
nal of the ACM32(3) (July 1985) 505-536

4. Climaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: A biddte approach for routing
problems in multimedia networks. Network&(4) (2003) 206—220



216

5.

6.

10.

11.
12.

13.

14.

E. Machuca, L. Mandow, J.L.P. Cruz

Alechina, N., Logan, B.: State space search with prioritised softtcaints. Applied Intel-
ligencel4(3) (2001) 263-278

Gabrel, V., Vanderpooten, D.: Enumeration and interactive seteofi@fficient paths in
a multiple criteria graph for scheduling an earth observing satellite. Earopeurnal of
Operational Researd89(2002) 533-542

. Refanidis, I., Vlahavas, |.: Multiobjective heuristic state-spaceckedrtificial Intelligence

145(2003) 1-32

. Hansen, P.: Bicriterion path problems. In: Lecture Notes in Ecoroard Mathematical

Systems 177, Springer (1979) 109-127

. Miller-Hannemann, M., Weihe, K.: On the cardinality of the paretarskicriteria shortest

path problems. Annals OR47(1) (2006) 269—286

Tung, C.T., Chew, K.L.: A multicriteria pareto-optimal path algorittiBaropean Journal of
Operational Resear@® (1992) 203—-209

Stewart, B.S., White, C.C.: Multiobjective A*. JACBB(4) (1991) 775-814

Mandow, L., Pérez de la Cruz, J.L.: A new approach to multiomed search. In: Proc.
of the XIX Int. Joint Conf. on Atrtificial Intelligence (IJCAI'05). (200218-223

Mandow, L., Pérez de la Cruz, J.L.: Comparison of heuristicstitiiobjective A* search.

In: CAEPIA05 -LNAI 4177, Springer (2006) 180—189

Dijkstra, E.W.: A note on two problems in connexion with graphs. Nisoke Mathematik

1(1959) 269-271



