
An Evaluation of Heuristic Functions for Bicriterion
Shortest Path Problems⋆

E. Machuca, L. Mandow and J.L. Pérez de la Cruz

Dpto. Lenguajes y Ciencias de la Computación. Universidad de Málaga 29071 - Málaga (Spain).
{machuca, lawrence, perez}@lcc.uma.es

Abstract. The paper considers a set of heuristic search algorithms for the Bicri-
terion Shortest Path Problem. These are presented as particular casesof a more
general algorithm. Their performance is evaluated over a random problem set
using two general heuristic functions proposed by Tung & Chew (1992). The ex-
perimental results show that the heuristics reduce the space requirements of the
algorithms considered. One contribution of this paper is to show that, contrary
to intuition, no improvement in time performance is achieved in these cases by
using heuristics. In fact, one of the heuristics appears to work against time effi-
ciency. The paper provides also an explanation to the observed phenomena and
points out possible lines of improvement.

1 Introduction

Heuristic search in Shortest Path Problems is a central fieldof study in Artificial Intel-
ligence. The A∗ algorithm [1] [2][3] is an efficient solution for the case of admissible
graph search guided by single-objective heuristic evaluation functions.

The Bicriterion Shortest Path Problem (BSP) is an extensionof the Shortest Path
Problem with practical applications in different domains,like routing in multimedia net-
works [4], route planning [5] satellite scheduling [6], or domain independent planning
[7]. BSP problems require the evaluation of two different and frequently conflicting
objectives for each alternative. These problems rarely have a single optimal solution.
Most frequently, a set ofnondominated(Pareto-optimal) solutions can be found, each
one presenting a particular trade-off between the objectives under consideration. The
number of nondominated solutions in BSP problems is known togrow exponentially
with solution depth in the worst case [8]. Fortunately, several classes of interesting
multiobjective problems do not exhibit this worst-case behavior [9].

The Artificial Intelligence and Operations Research communities have contributed
several extensions of the A* algorithm to the multiobjective case. These include Tung-
Chew [10], MOA* [11], and NAMOA* [12]. One of the fundamental differences be-
tween these algorithms is their path/node selection strategies. The selection strategy of
NAMOA* was shown to have better formal properties than that of MOA*, and to im-
prove in space requirements both formally and empirically [12] [13]. However, to the

⋆ This work is partially funded by/Este trabajo está parcialmente financiado por: Consejería de
Innovación, Ciencia y Empresa. Junta de Andalucía (España), P07-TIC-03018

206 E. Machuca, L. Mandow, J.L.P. Cruz

author’s knowledge, there are no results comparing the performance of the heuristic
selection strategies of NAMOA* and Tung-Chew.

The work of Tung & Chew [10] described also two general heuristic functions for
multiobjective shortest path problems. The real impact of these heuristic functions in
algorithm performance has never been tested with empiricalresults. This paper consid-
ers a general bicriterion search procedure that encompasses both NAMOA* and Tung-
Chew. The impact of Tung and Chew’s heuristics in the time andspace requirements of
several particular instances of this procedure is evaluated over a random problem set.
Several of the algorithms considered exhibit a similar reduction in space requirements
when compared to uninformed search. However, contrary to intuition, no improvement
in time performance is achieved. In fact, one of the heuristics considered seems to work
against time efficiency. The paper provides an explanation to the observed phenomena
and points out possible lines of improvement.

The structure of the paper is as follows. Section2 introduces some common termi-
nology useful to understand BSP problems and a description of the heuristics analyzed
in the paper. It also describes a general multiobjective search procedure that helps to
identify the four particular algorithms used in the experiments. Section3 describes the
experimental setup, and analyzes the space and time requirements of the algorithms
considered. An adequate explanation of the observed phenomena is presented. Finally
some conclusions and future work are outlined.

2 Algorithms

2.1 Bicriterion Shortest Path Problems

Let us consider twoq-dimensional vectorsv,v′ ∈ Rq. A partial order relation≺ de-
nominateddominanceis defined as follows,v ≺ v′ iff ∀i(1 ≤ i ≤ q) vi ≤ v′

i and
v 6= v′, wherevi denotes the i-th component of vectorv.

Given twoq-dimensional vectorsv andv′ (whereq > 1), it is not always possible
to say that one is better than the other. For example in a bidimensional cost space vector
(2, 3) dominates(2, 4), but no dominance relation exists between(2, 3) and(3, 2).

Given a set of vectorsX, we shall definend(X) as the set of non-dominated vectors
in X, i. e.,nd(X) = {x ∈ X | ∄y ∈ X y ≺ x}

A total order relation≺L denominatedlexicographic orderis defined as follows,
v ≺L v′ iff for some j, vj < v′

j and∀i < j, vi = v′
i. A useful property of the

lexicographic order is that the lexicographic optimum in a set of vectors is also a non-
dominated vector.

Let G be a locally finite labeled directed graphG = (N,A, c) with |N | nodes and
|A| arcs(n, n′) labeled with positive vectorsc(n, n′) ∈ Rq. The cost of a path is defined
as the sum of the costs of its arcs; obviously, the cost of a path is aq-dimensional vector.
A multiobjective search problem inG is stated as follows:

Given a start nodes ∈ N and a set of goal nodesΓ ⊆ N , find the set of allnon-
dominatedpathsP in G, i. e., the set of all pathsP such that

i) P goes froms to a node inΓ ;
ii) the cost ofP is non-dominated by the costs of any other path satisfying i).

An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems207

The Bicriterion Shortest Path Problem (BSP) is a particularcase of MSP in which
q = 2, i. e., arc costs have two real components.

2.2 A general algorithm

The general algorithm ran in the experiments reported in this paper, is presented in table
1. This algorithm is a slight generalization of NAMOA∗ [12]. In fact, the only difference
with NAMOA∗ lies in step 3. This difference will be explained in subsection2.4.

The main features of the algorithm are as follows:

– The algorithm uses an acyclic search graphSG to record interesting partial solution
paths. For each noden in SG two sets —Gcl(n) andGop(n)— denote the sets of
non-dominated cost vectors of paths reachingn that have or have not been explored
yet respectively (i.e. closed or open). Each cost vector in these sets labels one or
more pointers emanating fromn to its parents with that cost. Initially,s is the only
node inSG.

– The algorithm keeps a listOPEN of partial solution paths that can be further
expanded. For each noden in SG and each nondominated cost vectorg ∈ Gop(n)
there will be a corresponding label(n, g, F (n, g)) in OPEN . Initially, the tuple
(s, gs, F (s, gs)) is the only label inOPEN . Notice that contrary to what happens
in single-objective search, many different nondominated paths may reach a given
node. Therefore, it is the number of cost vectors stored inGop(n) andGcl(n) what
determines memory requirements, while the number of nodes plays a minor role.

– At each iteration the algorithm will consider the extensionof an open label(n, g, F)
that stands for a partial solution path froms to n with costg.

– Two sets —GOALN andCOSTS— record all goal nodes reached and all non-
dominated cost vectors to goal nodes respectively. Once a solution is known, its
cost vector can be used to discard (filter) dominated open labels.

– Search terminates only when theOPEN list is empty, i.e. when all open labels
have been selected or filtered.

– Heuristic estimates will normally involve a set of vectorsH(n) for each noden.
These vectors estimate the costs of nondominated paths fromn to each goal node.
Let g(P) be the function that returns the cost of pathP , defined by the sum of
the costs of all its component arcs. Therefore, for each pathPsn from s to n with
costg(Psn) = gP , there will be a set of heuristic evaluation vectorsF (Psn). This
function is the multiobjective analogue off(n) in A∗, F (Psn) = F (n, gP) =
nd({f | f = gP + h ∧ h ∈ H(n)}). In this paper, we will consider the situ-
ation whereH(n) = {h(n)}, i.e., there is only one vector estimateh. Therefore
F (Psn) = {f}, f = g + h.

2.3 Heuristic functions

The main goal of this paper is the comparative study of the performance of the general
algorithm when instantiated with some heuristic functions. Three heuristic functions
will be considered.

208 E. Machuca, L. Mandow, J.L.P. Cruz

1. CREATE:
– An acyclic search graphSG rooted ins.
– List of alternatives,OPEN = { (s, gs, F (s, gs)) }.
– Two empty sets,GOALN , COSTS.

2. CHECK TERMINATION. If OPEN is empty, then backtrack inSG from the nodes in
GOALN and return the set of solution paths with costs inCOSTS.

3. PATH SELECTION. Select an alternative(n, gn, F) from OPEN. Delete(n, gn, F) from
OPEN , and movegn from Gop(n) to Gcl(n).

4. SOLUTION RECORDING. Ifn ∈ Γ , then
– Includen in GOALN andgn in COSTS.
– Eliminate fromOPEN all alternatives(x, gx, Fx) such that all vectors inFx are dom-

inated bygn (FILTERING).
– Go back to step2

5. PATH EXPANSION: Ifn 6∈ Γ , then
For all successors nodesm of n that do not produce cycles inSG do:
(a) Calculate the cost of the new path found tom: gm = gn + c(n, m).
(b) If m is a new node

i. CalculateFm = F (m, gm) filtering estimates dominated byCOSTS.
ii. If Fm is not empty, put(m, gm, Fm) in OPEN , and putgm in Gop(m) labelling

a pointer ton.
iii. Go to step2.
else (m is not a new node), in case

– gm ∈ Gop(m) or gm ∈ Gcl(m): label withgm a pointer ton, and go to step2.
– If gm is non-dominated by any cost vectors inGop(m) ∪ Gcl(m) (a path tom

with new cost has been found), then :
i. Eliminate fromGop(m) andGcl(m) vectors dominated bygm

ii. CalculateFm = F (m, gm) filtering estimates dominated byCOSTS.
iii. If Fm is not empty, put(m, gm, Fm) in OPEN , and putgm in Gop(m)

labelling a pointer ton.
iv. Go to step2.

– Otherwise: go to step2.

Table 1.A general multiobjective search algorithm.

When no heuristic information is available, the trivial heuristic function is given by
h0(n) = 0, for all nodesn.

Tung and Chew [10] proposed two nontrivial heuristic functions that are wellde-
fined for every Bicriterion Path Problem. The first heuristic1 will be called in this paper
h12(n) = (h1(n), h2(n)) and is computed as follows: consider a graphGi (i = 1, 2)
with same nodes than the given graphG and arcs reversed. For each arc(n′, n) in Gi a
scalar cost is defined, given by thei-th component of the costc(n, n′) in G. Then apply
Dijkstra’s algorithm [14] to this graph to find the shortest path from a terminal nodet
to the usual starting nodes, breaking the ties by a lexicographic order. In this way, we
compute for each noden, a valuehi(n), that is, the cost of the “best” path fromt to n
(i. e., fromn to t), considering only thei-th component of the cost. It is obvious that

1 Tung and Chew [10] call this heuristicq.

An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems209

the vectorial heuristich12(n) = (h1(n), h2(n)) is optimistic, i. e.,h12(n) ≺ f∗(n) for
every noden.

The second heuristic2 proposed by Tung and Chew will be called in this paperhmix

and is defined in a similar way, as the result from applying Dijkstra’s algorithm to the
graph resulting from reversing every arc, but the cost is nowthe sum of the components
of the cost of the original graph, i. e., arc(n′, n) is labeled withc(n′, n) =

∑
i ci(n, n′).

Notice thathmix is a scalar heuristic.

Algorithm Selection rule Additional selection rule Filtering criteria

NAMOA-LEX-H0 bestg lex order g dominated
NAMOA-LEX bestg + h12 lex order g + h12 dominated

TC-BS best
P

i gi g + h12 dominated
TC-HS besthmix +

P
i gi g + h12 dominated

Table 2. Instantiations of the general algorithm.

2.4 Instantiation of the general algorithm

Heuristic functionsh(n) do not appear explicitly in the pseudocode in table1. However,
there are four points whereh(n) is implicitly invoked:

– Step 3, PATH SELECTION. Usually the node selected fromOPENis non-dominated
according to certain heuristic function.

– Step 4, SOLUTION RECORDING (filtering). All alternatives(x, gx, Fx), such
that all vectors inFx are dominated by the costgn of a newly found solution,
are eliminated fromOPEN. Since we are assuming that there is just an element
fx ∈ Fx, fx = gx + hx, the heuristic function also plays a role at this step.

– Step 5(b).i and 5(b).iii.ii. These are two new occurrences of filtering when perform-
ing the step PATH EXPANSION. Filtering depends on the valuesof Fx and hence
on the values of the heuristic function3.

Algorithm NAMOA* [12] is just the algorithm of table1 when the same heuristic
function is applied both for path selection (step 3) and for filtering. Sincehmix is a
scalar function, it could not be sensibly used for filtering.Therefore, considering the
heuristic functions defined in subsection2.3, there will be two instances of NAMOA:
blind NAMOA* (with h0 for selecting and filtering) and informed NAMOA* (with
h12 for selecting and filtering). In both cases, the selection procedure of step 3 could be
stated as follows:

PATH SELECTION (version A). Select an alternative(n, gn, {f}) from OPEN
such that∄(n′, gn′ , {f ′}) ∈ OPEN | f ′ ≺ f .

2 Tung and Chew [10] call this heuristic with the somewhat confusing nameh∗.
3 Notice that the originalalgorithmproposed by Tung and Chew [10] does not perform all these

filtering operations, or performs them in a different way

210 E. Machuca, L. Mandow, J.L.P. Cruz

In other words, a nondominatedf is selected from OPEN. This guarantees admis-
sibility [12]. But this rule is not enough to determine the selected path;usually there
are many nondominatedf in OPEN. An additional rule is needed. The original de-
scription of NAMOA* [12] suggests LEX, the lexicographical order, as a suitable rule.
Therefore, we consider two instantiations of the general algorithm with version A of
path selection: NAMOA-LEX-H0 (blind NAMOA-LEX) and NAMOA-LEX (informed
NAMOA-LEX).

If path selection is not dictated by the same heuristic function used for filtering,
other possibilities appear. Tung and Chew [10] proposed the following selection rule
that uses thehmix heuristic (preservingh12 for filtering):

PATH SELECTION (version B). Select an alternative(n, gn, {f}) from OPEN
such that∀(n′, gn′ , {f ′}) ∈ OPEN, it holds thathmix +

∑
i gi ≤ h′

mix +
∑

i g′
i.

The corresponding instance of the algorithm will be called TC-HS (for Tung &
Chew with Heuristic Selection).

In order to evaluate the impact of thehmix heuristic, we shall consider an additional
blind selection rule:

PATH SELECTION (version C). Select an alternative(n, gn, {f}) from OPEN
such that∀(n′, gn′ , {f ′}) ∈ OPEN, it holds that

∑
i gi ≤

∑
i g′

i.
It is easily proven that minimizing

∑
i gi yields a nondominatedf ,(just consider

thath0(n) is used for selection). Since this rule is a “blind” version of that in Tung and
Chew [10], the corresponding instance of the algorithm will be called TC-BS (for Tung
& Chew with Blind Selection).

Table2 sums up the features of the four algorithms studied in this paper.

3 Empirical evaluation

Bidimensional square grids without obstacles were used to test the algorithms. Biob-
jective cost vectors(c1, c2) were generated for each arc. The valuesc1, c2 were inde-
pendently and randomly generated from a uniform distribution of integer values in the
range[1, 10]. Ten different sets of grids with sizes from10×10 to 100×100 were gen-
erated. The results presented for each size are averaged over the ten different test sets.
Search was conducted in all of the problems from one corner ofthe grid to the opposite.
Therefore, solution depth varies from 20 to 200 in steps of 20. The results discussed in
the following describe the number of iterations, space, andtime requirements of each
algorithm as a function of grid size.

The tests were run on a Windows XP 32-bit platform, with an Intel Core2 Quad
Q9550 at 2.8Ghz, and 4Gb of RAM. The algorithms were implemented to share as
much code as possible, using the LispWorks Professional 5.01 programming environ-
ment. Nevertheless, important differences are needed. Both informed and blind NAMOA-
LEX share all their code and only differ in the heuristic function provided. TheGop sets
were ordered lexicographically. Both TC-HS and TC-BS sharealso all of their code.
However, theGop sets were ordered according to their respective linear evaluation func-
tions. In all implementations, only the current best cost estimate of each node was kept
in OPEN at each iteration, as suggested in [12]. TheOPEN list was implemented as
a binary heap.

An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems211

20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
x 10

5

Solution Depth

La
be

ls
 in

 th
e

se
ar

ch
 g

ra
ph

Blind searches (NAMOA−LEX−H0, TC−BS)
Heuristic searches (NAMOA−LEX, TC−HS)

Fig. 1. Iterations/Space requirements at different solution depths, averaged over ten
problem sets.

3.1 Number of iterations and space requirements

Most analysis of heuristic search algorithms concentrate on the number of iterations as
a measure of their complexity. Figure1 shows the number of iterations of the algorithms
as a function of grid size. Both heuristic searches (NAOMA-LEX and TC-HS) obtained
undistinguishable results. NAMOA-LEX and TC-HS exhibit animportant reduction in
the number of iterations (i.e labels considered) when compared with blind NAMOA-
LEX-H0 and TC-BS. Again, blind searches (NAMOA-LEX-H0 and TC-BS) obtained
indistinguishable results. The reduction in the number of iterations using heuristics is
on average 45%. The number of labels stored in the search graph was found in all cases
to equal the number of iterations. This is not surprising, since the label expanded by
the algorithms at each iteration is permanently stored in the Gcl sets. Therefore, space
requirements grow fast with solution depth. The number of nodes in each grid (n × n)
is comparatively much smaller than the total number of labels.

This is an important result for the heuristics under consideration, since most ap-
plications of bicriterion search described in the literature report difficulties with space
requirements.

212 E. Machuca, L. Mandow, J.L.P. Cruz

60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

Solution Depth

T
im

e(
se

co
nd

s)

TC−BS
TC−HS
NAMOA−LEX−H0
NAMOA−LEX

Fig. 2.Time requirements at different solution depths, averaged over ten problem sets.

3.2 Time requirements

A first conclusion from the experiments is that the time needed to calculate the heuris-
tic values is not significant compared to total execution time (less than 5% on average,
and less than 1% in the largest problems). This is due to the fact that the single ob-
jective search runs, used to precompute the heuristic values, have much smaller time
requirements than bicriterion search.

Time requirements of all algorithms are shown in figure2. Contrary to intuition, the
experiments do not show the decrease in time that could be expected from the reduction
in the number of iterations of the NAMOA-LEX and TC-HS algorithms. NAMOA-LEX
has requirements similar to those of uninformed NAMOA-LEX-H0 in spite of the fact
that the number of iterations is much smaller. Surprisingly, TC-BS takes significantly
less time than TC-HS. In fact, TC-BS was the fastest algorithm and TC-HS the slowest.
It is obvious from these results that search time cannot be easily extrapolated from the
number of iterations. This is due to the fact that in bicriterion search, label expansion is
by no means an atomic constant-time operation.

Bicriterion search algorithms share with scalar ones a variability in time per iteration
due to the need to sort open alternatives. In bicriterion search the number of open alter-
natives is low at the beginning and end of the search, and highsome time in between.
Additionally, each new label selected for expansion generates a number of successor
labels that need to be checked for dominance with the labels in theGop(n) andGcl(n)

An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems213

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14
x 10

5

Time(seconds)

T
ot

al
 n

um
be

r
of

 it
er

at
io

ns

TC−BS
TC−HS
NAMOA−LEX−H0
NAMOA−LEX

Fig. 3.Number of iterations vs. time for a particular search problem.

sets of the destination noden, as well as the set of nondominated labels found to the
goal nodes (i.e. those kept in theCOSTS set). Particularly, the size ofCOSTS can
grow rapidly with solution depth. Therefore, the costly dominance checks used in the
filtering steps Step 5(b).i and 5(b).iii.ii of the algorithmin table1 seem to dominate
time requirements.

Our analysis reveals that time per iteration is highly influenced by the number of
solutions already found at each iteration (i.e. the size of theCOSTS set at that time).
Figures3 and4 illustrate the behavior of the algorithms for one particular problem of
size100 × 100. Figure3 shows that both TC-BS and NAMOA-LEX-H0 performed
the same number of iterations in this problem. However, TC-BS performed a roughly
constant number of iterations per second and abruptly slowed down at the end, while
NAMOA-LEX-H0 slowed down more gradually and finally took more time to finish.
Notice that TC-HS and NAMOA-LEX performed less iterations than the previous algo-
rithms, but required more time per iteration from the beginning, specially TC-HS. The
result is that these algorithms were slower while solving the same problem instance.
Similar behaviour was found in all cases analyzed.

The explanation of this behavior can be found in figure4. All algorithms found the
same number of solutions. However, TC-BS found the solutions in the final seconds
of search, coincidentally with the abrupt descent of iterations per second observed in
figure3. In a similar way, NAMOA-LEX-H0 found solutions more gradually but also in
the final search stage, resulting in the second fastest alternative. NAMOA-LEX found

214 E. Machuca, L. Mandow, J.L.P. Cruz

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Time(seconds)

T
ot

al
 n

um
be

r
of

 n
on

do
m

in
at

ed
 s

ol
ut

io
ns

 fo
un

d

TC−BS
TC−HS
NAMOA−LEX−H0
NAMOA−LEX

Fig. 4. Number of nondominated solutions found vs. time for a particular search prob-
lem.

solutions even faster and was therefore slower. Finally, TC-HS found solutions very
quickly and was the slowest algorithm.

Figure5 shows the time taken by each algorithm to find thefirst solution as a func-
tion of solution depth averaged for all problem sets. Again,TC-BS is the algorithm that
starts to find solutions later, followed by NAMOA-LEX-H0. Both NAMOA-LEX and
TC-HS find solutions very early and appear undistinguishable at this scale.

4 Conclusions and future work

The paper presents a general bicriterion search procedure that encompasses NAMOA*
and Tung-Chew. This formal contribution highlights the differences between these al-
gorithms and allows a clear comparison of different alternatives.

The effect of the heuristic functions proposed by Tung and Chew was evaluated em-
pirically over four instances of the general search procedure (TC-HS, TC-BS, NAMOA-
LEX, and NAMOA-LEX-H0). Several important conclusions canbe drawn. In the first
place, the experiments confirmed that the time needed to calculate the heuristics is not
significant compared to total execution time. The heuristics were also found to improve
the number of iterations, reducing the space requirements of the algorithms. The re-
duction of space requirements was similar in TC-HS (which used a combination of two
heuristic functions) and NAMOA-LEX (which used only one of the heuristic functions).

An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems215

60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Solution Depth

T
im

e
to

 fi
rs

t s
ol

ut
io

n(
se

co
nd

s)

TC−BS
TC−HS
NAMOA−LEX−H0
NAMOA−LEX

Fig. 5.Time requirements to reach the first solution averaged over all problem sets.

However, contrary to intuition, no time improvement could be observed in the algo-
rithms with informed selection over the uninformed ones. The speed of the algorithms
was found to be related to the discovery of nondominated solutions. Those algorithms
that found solutions later in the search performed consistently faster. In this sense, the
use of a specialized selection heuristic in TC-HS was found to work against the time
efficiency of the algorithm.

The use of heuristics can effectively reduce the number of considered alternatives
in bicriterion search algorithms. Most practical implementations of current algorithms
perform linear or lexicographic orderings for label selection. The results presented in
this paper suggest that the investigation of alternative orderings that combine heuristic
search and delayed expansion of solutions could lead to moreefficient algorithms.

References

1. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Systems Science and Cybernetics SSC-42 (1968) 100–107

2. Pearl, J.: Heuristics. Addison-Wesley, Reading, Massachusetts (1984)
3. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. Jour-

nal of the ACM32(3) (July 1985) 505–536
4. Clímaco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: A bicriterion approach for routing

problems in multimedia networks. Networks41(4) (2003) 206–220

216 E. Machuca, L. Mandow, J.L.P. Cruz

5. Alechina, N., Logan, B.: State space search with prioritised soft constraints. Applied Intel-
ligence14(3) (2001) 263–278

6. Gabrel, V., Vanderpooten, D.: Enumeration and interactive selection of efficient paths in
a multiple criteria graph for scheduling an earth observing satellite. European Journal of
Operational Research139(2002) 533–542

7. Refanidis, I., Vlahavas, I.: Multiobjective heuristic state-space search. Artificial Intelligence
145(2003) 1–32

8. Hansen, P.: Bicriterion path problems. In: Lecture Notes in Economics and Mathematical
Systems 177, Springer (1979) 109–127

9. Müller-Hannemann, M., Weihe, K.: On the cardinality of the pareto setin bicriteria shortest
path problems. Annals OR147(1) (2006) 269–286

10. Tung, C.T., Chew, K.L.: A multicriteria pareto-optimal path algorithm. European Journal of
Operational Research62 (1992) 203–209

11. Stewart, B.S., White, C.C.: Multiobjective A*. JACM38(4) (1991) 775–814
12. Mandow, L., Pérez de la Cruz, J.L.: A new approach to multiobjective A* search. In: Proc.

of the XIX Int. Joint Conf. on Artificial Intelligence (IJCAI’05). (2005) 218–223
13. Mandow, L., Pérez de la Cruz, J.L.: Comparison of heuristics in multiobjective A* search.

In: CAEPIA’05 -LNAI 4177, Springer (2006) 180–189
14. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik

1 (1959) 269–271

