
Restoring CSP Satisfiability with MaxSAT⋆

Inês Lynce1 and Joao Marques-Silva2

1 IST/INESC-ID, Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

2 CSI/CASL, University College Dublin, Ireland
jpms@ucd.ie

Abstract. The extraction of a Minimal Unsatisfiable Core (MUC) in
a Constraint Satisfaction Problem (CSP) aims to identify a subset of
constraints that make a CSP instance unsatisfiable. Recent work has
addressed the identification of a Minimal Set of Unsatisfiable Tuples
(MUST) in order to restore the CSP satisfiability with respect to that
MUC. A two-step algorithm has been proposed: first, a MUC is identified,
and second, a MUST in the MUC is identified. This paper proposes an
integrated algorithm for restoring satisfiability in a CSP, making use of an
unsatisfiability-based MaxSAT solver. The proposed approach encodes
the CSP instance as a partial MaxSAT instance, in such a way that
solving the MaxSAT instance corresponds to identifying the smallest set
of tuples to be removed from the CSP instance to restore satisfiability.
Experimental results illustrate the feasibility of the approach.

Key words: constraint satisfaction problems, minimal unsatisfiable cores,
minimal set of unsatisfiable tuples, maximum satisfiability

1 Introduction

The identification of unsatisfiable problem instances poses a few questions, in-
cluding knowing why the instance is unsatisfiable and how it can be repaired
to become satisfiable. For example, configuring a product may not always result
in a feasible configuration, but in that case the customer would be pleased to
receive explanations to understand what made the configuration unfeasible or
alternatively to receive some hints about how to make it feasible. Such feedback
is in general expected to be as precise as possible, i.e. to identify a minimal
reason of unsatisfiability and to minimize the impact of restoring satisfiability.

If one considers Boolean satisfiability (SAT), then these questions are an-
swered identifying Minimal Unsatisfiable Subformulas (MUSes) and obtaining
Maximum Satisfiability (MaxSAT) solutions. Similarly, in the context of the
Constraint Satisfaction Problem (CSP) these questions are answered by identify-
ing Minimal Unsatisfiable Cores (MUCs) and obtaining Maximum CSP (MaxCSP)
solutions. However, as recently pointed out [7], in CSPs one may consider un-
satisfiable sets of tuples instead of unsatisfiable sets of constraints. The first is
⋆ Research partially funded by FCT project SHIPs (PTDC/EIA/64164/2006).

194 I. Lynce, J. Marques-Silva

considered to be a finer-grained explanation as unsatisfiable sets of tuples may
eventually not contain as many tuples as unsatisfiable sets of constraints.

Let us get back again to the configuration of a product. Suppose you have
two configuration requirements for your new car: (1) it has to be a sports car
and (2) you want it to have the most inexpensive type of seats. It turns out that
the car model that you have selected does not allow such configuration. So you
may be simply told that those two requirements are not compatible or, much
better, that a sports car must have leather seats which is incompatible with
having cloth seats. The latter explanation is certainly more precise. Also, it will
be easier for you to repair the initial configuration either keeping all but one of
the characteristics of a sports car (leather seats) or forgetting about inexpensive
seats.

This paper addresses the problem of repairing an unsatisfiable CSP instance
by removing the smallest number of tuples. This has in general less impact than
removing constraints, and in the worst case the same impact. A MaxSAT en-
coding is used to solve the problem of repairing a CSP for which constraints
are defined as conflicts, with no need of first extracting a MUC. Using an
unsatisfiability-based MaxSAT solver has the advantage of identifying unsat-
isfiable sets of tuples while restoring satisfiability.

The paper is organized as follows. The next section introduces the prelimi-
naries, alongside with illustrative examples. Next, the new approach for restoring
satisfiability in a CSP using MaxSAT is described. Experimental results show
that the proposed approach is feasible. Finally, the paper concludes and points
out future research directions.

2 Preliminaries

2.1 CSPs, MUCs and MUSTs

In what follows we assume that CSP variables have finite domains and that the
constraints over variables correspond to conflicts rather than supports.

Definition 1. (CSP) A CSP instance is a triple (X,D,C) where X = {x1, . . . ,
xn} is a set of n variables, D = {d(x1), . . . , d(xn)} is a set of n domains,
where each domain d(x) corresponds to the domain of variable x ∈ X, and
C = {c1, . . . , cm} is a set of m constraints. Each constraint c ∈ C is a pair
c = (S,R) where S is a sequence of variables of X, called the constraint scope,
and R is a |S|-ary relation over D, called the constraint relation.

An assignment to a CSP instance is a set {(v1, a1), . . . , (vk, ak)} where {v1, . . . ,
vk} ⊆ X is a set of variables and ai ∈ d(vi) for all i with 1 ≤ i ≤ k. In case k = n
the assignment is said to be complete. Assuming that a constraint relation spec-
ifies disallowed assignments, i.e. the conflicts, a solution to a CSP instance is a
complete assignment such that no assignment to a constraint scope is a member
of the corresponding constraint relation. A CSP instance for which there is a
solution is said to be satisfiable; otherwise it is said to be unsatisfiable.

Restoring CSP Satisfiability with MaxSAT 195

x
1

x
3

x
2

c
1

c
3

c
2

1

2

x
1

x
2

x
3

1

2

3

0

1 (1,1)(1,2)(1,1)(1,2)(0,1)(0,2)(0,3)(1,2)(1,3)
Fig. 1. Graphical representation of the CSP instance from Example 1

Example 1. (CSP) Let P be the CSP instance graphically represented in Fig-
ure 1. Formally, P = (X,D,C), with X = {x1, x2, x3}, D = {d(x1) = {0, 1}, d(x2)
= {1, 2, 3}, d(x3) = {1, 2}} and C = {c1, c2, c3} = {((x1, x2), {(0, 1), (0, 2), (0, 3),
(1, 2), (1, 3)}), ((x1, x3), {(1, 1), (1, 2)}), ((x2, x3), {(1, 1), (1, 2)})}. Figure 1 rep-
resents P taking into account its variables and constraint scopes (top) and its
variable domains and constraint relations (bottom). The arrows denote the order
of the variable values in the conflict tuples.

We should note that the constraints of the previous example could be alter-
natively defined in terms of allowed assignments, i.e. the supports. In some cases
such approach has the advantage of requiring less tuples. For example, c1 would
become ((x1, x2), {(1, 1)}) instead. But in other cases it may be the contrary.
For example, c2 would become ((x2, x3), {(2, 1), (2, 2), (3, 1) (3, 2)}).

Definition 2. (UC) An unsatisfiable core (UC) of an unsatisfiable CSP P =
(X,D,C) is a CSP instance P ′ = (X ′,D′, C ′) such that (1) P ′ is unsatisfiable
and (2) X ′ ⊆ X, D′ ⊆ D is the set of domains of variables in X ′ and C ′ ⊆ C
is the set of constraints with their scopes in X ′.

196 I. Lynce, J. Marques-Silva

An unsatisfiable core (UC) of an unsatisfiable CSP instance is a CSP instance
that is a subset of the former one with respect to its variables, domains and
constraints, and is still unsatisfiable. An unsatisfiable CSP instance has at least
one UC corresponding to itself.

An unsatisfiable core is expected to be minimal as it should be as precise
as possible when identifying the causes of unfeasibility, thus extracting minimal
unsatisfiable cores (MUCs). An UC has at least one MUC, and in case it is
unique then the MUC is equal to the UC. Removing one constraint per MUC
restores satisfiability. A smaller number of constraints suffices when constraints
are shared by different MUCs.

Definition 3. (MUC) A minimal unsatisfiable core (MUC) of an unsatisfiable
CSP instance P is an UC of P , say P ′, such that removing any of the constraints
of P ′ makes the resulting CSP instance satisfiable.

Providing the user with explanations of unsatisfiability of CSPs has been
first addressed with QuickXplain [8]. Moreover, the extraction of MUCs in CSPs
has been recently made feasible [5]. The proposed algorithm performs successive
runs of a complete backtracking search, using weights, in order to isolate an
inconsistent subset of constraints.

Another approach for explaining unfeasibility consists in dealing with the tu-
ples of constraint relations (in the sequel called tuples) rather than constraints
defined as a pair with their scopes and relations [7]. This approach has clear
advantages. Instead of identifying a set of constraints as the causes of unsatis-
fiability, a set of tuples is identified. Consequently, restoring satisfiability when
considering tuples implies removing tuples rather than constraints, which may
have a minor impact on the encoding. This assumes that, when making the
encoding of a CSP instance, errors have been introduced when encoding a few
tuples rather than when encoding a few constraints (including all its tuples).

Definition 4. (MUST) A minimal unsatisfiable set of tuples (MUST) of an
unsatisfiable CSP P = (X,D,C), with C = {(S1, R1), . . . , (Sm, Rm)}, is a CSP
P ′ = (X ′,D′, C ′) such that (1) P ′ is unsatisfiable, (2) ∀(S′, R′) ∈ C ′ ∃(S,R) ∈
C : S′ = S ∧ R′ ⊆ R, X ′ ⊆ X is the set of variables in S′ and D′ ⊆ D is
the set of domains of variables in X ′ and (3) removing any tuple from R′ s.t.
(S′, R′) ∈ C ′ makes the resulting CSP instance satisfiable.

It is worth mentioning that tuples in a MUST do not necessarily belong to
constraints in a MUC. An illustrative example is given bellow.

Example 2. (MUC and MUST) Figure 2 illustrates MUCs and MUSTs of the
CSP instance P introduced in Example 1. P has two MUCs: one with c1 and
c2 and another one with c1 and c3. An intuitive explanation is the following:
c1 implies the assignment {(x1, 1), (x2, 1)}, whereas c2 forbids the assignment
{(x1, 1)} and c3 forbids the assignment {(x2, 1)}. Any of these MUCs contains
seven tuples. Several MUSTs can be identified in P but only two of them are
illustrated in the figure (bottom). One of them (left) corresponds to the small-
est MUST and contains only five tuples. The point is that not all tuples from

Restoring CSP Satisfiability with MaxSAT 197

x
1

x
3

x
2

c
1

c
3

c
2

1

2

x
1

x
2

x
3

1

2

3

0

1 (1,1)(1,2)(1,1)(1,2)(0,1) (0,2) (1,2) (0,3) (1,3)
1

2

x
1

x
2

x
3

1

2

3

0

1 (1,1)(1,2)(1,1)(1,2)(0,1) (0,2) (1,2) (0,3) (1,3)
Fig. 2. MUCs and MUSTs of the CSP instance from Example 1

constraint c1 are required to make the instance unsatisfiable when considering
also c2. The other MUST (right) contains six tuples with the particularity of
covering all the constraints.

Satisfiability of a CSP can be restored by removing one tuple of each MUST.
Similarly to MUCs, a smaller number of tuples may be removed when tuples
are shared by different MUSTs. For the running example, removing a tuple
representing either the conflict between assignments x1 = 0 and x2 = 2 or
assignments x1 = 0 and x2 = 3 suffices to restore satisfiability.

2.2 SAT, MUSes and MaxSAT

We assume the reader is familiar with the SAT problem that consists in deciding
whether there exists a satisfying assignment to a set of Boolean variables such
that a given CNF formula is satisfied. A CNF formula is a conjunction of clauses,
where a clause is a disjunction of literals and a literal is a Boolean variable or
its complement (a positive or a negative literal, respectively).

A large body of research in SAT has been devoted to explaining unfeasibility
of CNF formulas in the last decade. These explanations have many different

198 I. Lynce, J. Marques-Silva

applications and are of the utmost importance in model checking using SAT
solvers. For each iteration, if the call to the SAT solver returns no solution, then
an explanation is extracted to be incorporated in the next iteration. Clearly, this
explanation should be as precise as possible. Explanations including irrelevant
clauses are expected to have a negative impact in the subsequent iterations.

The design of tools to identify unsatisfiable subformulas (USes) in SAT for-
mulas has been early addressed by Bruni [2] who used an heuristic approach to
identify a subset of clauses that are still unsatisfiable. Later on, Zhang [18] and
Goldberg [4] proposed a similar idea of extracting unsatisfiability proofs based
on the resolution steps taken for deriving the empty clause. These resolution
steps are implicitly behind the conflict clauses added to the formula as a result
of the analysis of conflicts during the search. The identification of all the minimal
unsatisfiable subformulas (MUSes) in a systematic way was first developed by
Liffiton [11, 12] and later used for identifying the smallest MUS in an efficient
way [10]. The identification of MUSes has also shown to be competitive recur-
ring to a local search procedure as a preprocessing step to reduce the number of
clauses that may be part of the MUS [6].

The MaxSAT problem consists in finding the largest number of clauses that
can be satisfied in a CNF formula. The partial MaxSAT problem distinguishes
between hard and soft clauses: hard clauses must be satisfied by any solution,
while the number of soft clauses satisfied by a solution must be maximized.
Partial MaxSAT can be seen as a compromise between SAT and MaxSAT where
the hard clauses are treated as a SAT problem and the soft clauses are treated
as a MaxSAT problem.

3 Restoring Satisfiability with MaxSAT

The goal of restoring satisfiability of a CSP instance with a minimal impact can
be achieved by identifying the smallest size set of tuples to be removed from the
CSP constraint relations. Removing these tuples guarantees that the instance
is no longer unsatisfiable, whereas adding any of the removed tuples makes the
instance unsatisfiable.

With the aim of restoring CSPs satisfiability, recent work by Grégoire et al. [7]
introduced a two-step algorithm: (1) identify a MUC and (2) identify a MUST
in that MUC. This algorithm is called Muster and is outlined in Algorithm 1.
The extraction of a MUC and the extraction of a MUST is performed by using
tools developed in the past which are publicly available.

This paper suggests restoring CSP satisfiability with MaxSAT, which guar-
antees restoring satisfiability. This is a clear advantage with respect to Muster,
which only removes one MUST. The proposed algorithm involves three steps: (1)
encoding the problem into partial MaxSAT, (2) solving the partial MaxSAT in-
stance and (3) identifying the tuples to be removed from the CSP instance given
the partial MaxSAT solution. The pseudo code for this procedure is illustrated
in Algorithm 2. For each partial MaxSAT instance P ′ encoding a CSP instance
P , there is a mapping between each MaxSAT variable and each domain value of

Restoring CSP Satisfiability with MaxSAT 199

Algorithm 1 Identifying a MUST in a CSP

Muster(CSP P)

1 P ′ ← Extract MUC from P
2 P ′

SAT ← Encode CSP P ′ into SAT
3 � MP ′−P ′

SAT
contains mapping SAT/CSP

4 SolP ′
SAT
← Extract MUS from P ′

SAT

5 P ′′ ← CSP with recovered constraint tuples from SolP ′
SAT

using MP ′−P ′
SAT

6 return P ′′

Algorithm 2 Restoring CSP satisfiability with MaxSAT

RestoreCSPwithMaxSAT(CSP P)

1 PPMaxSAT ← Encode P as a partial MaxSAT instance
2 � MP−PP MaxSAT contains mapping SAT/CSP
3 SolPP MaxSAT ← PMaxSATsolver(PPMaxSAT)
4 P ′ ← CSP with recovered constraint tuples from SolPP MaxSAT using MP−PP MaxSAT

5 return P ′

a CSP variable. A partial MaxSAT solver is then called to solve P ′. Its solution
is used to identify the set of constraint tuples of P to be removed. In this section,
we will explain how to encode a CSP instance into a partial MaxSAT instance
to restore satisfiability.

3.1 A MaxSAT Encoding

We recall that given a CSP instance P = (X,D,C) for which the constraints
represent conflicts, it is encoded into a SAT instance P ′ as follows 3:

– For each variable x ∈ X and each value in the corresponding domain d(x) ∈
D is created a Boolean variable.

– For each set of Boolean variables {b1, . . . , b|d(x)|} associated with the same
CSP variable x ∈ X is created one clause (b1 ∨ . . . ∨ b|d(x)|) to ensure that
each CSP variable is assigned at least one value and a set of binary clauses
(¬bi ∨¬bj) with 1 ≤ i < j ≤ |d(x)| to ensure that no more than one value is
assigned to a CSP variable. In what follows, these clauses will be called at
least one clauses and at most one clauses, respectively.

– For each tuple t ∈ R of each constraint c = (S,R) ∈ C is created a clause with
|S| negative literals to ensure that the corresponding values are disallowed.
In what follows, these clauses will be called conflict clauses.

3 Details about encoding CSP into SAT and vice versa can be found in [17].

200 I. Lynce, J. Marques-Silva

We should note that there exist alternative encodings for guaranteeing that
exactly one value is assigned to each CSP variable (see for example [13, 16]).

Example 3. (CSP to SAT) Consider a CSP instance P = (X,D,C) = ({x1, x2},
{d(x1) = {1, 2}, d(x2) = {1, 3}}, {((x1, x2), {(1, 1), (2, 3)})}). Let us consider
that a Boolean variable bij corresponds to the domain value j ∈ d(xi) ∈ D
of variable xi ∈ X. The corresponding SAT instance has therefore the follow-
ing set of clauses: {(x11 ∨ x12), (x21 ∨ x23), (¬x11 ∨¬x12), (¬x21 ∨¬x23), (¬x11 ∨
¬x21), (¬x12 ∨ ¬x23)}. The first two clauses correspond to at least one clauses,
the next two clauses correspond to at most one clauses and the last two clauses
correspond to conflict clauses.

The CSP to SAT encoding used by Muster does not include the at most one
clauses. Provided that every at least one clauses belong to the MUST, computing
one MUST amounts to compute one MUS in the CNF formula.

Consider an unsatisfiable CSP instance P = (X,D,C) with constraints rep-
resenting conflicts and for which the minimum set of tuples to be removed in
order to restore satisfiability is to be found. This problem is encoded into a
partial MaxSAT instance P ′ as follows:

– Each at least one clause produced by an encoding of P into SAT is a hard
clause of P ′.

– Each conflict clause produced by an encoding of P into SAT is a soft clause
of P ′.

Remark 1. When using the MaxSAT encoding to restore satisfiability of a CSP
instance, there is no need of adding at most one clauses to guarantee a one-to-one
correspondence between Boolean variables and CSP variable values.

Proof. We assume that the CSP instance is unsatisfiable. The hard clauses guar-
antee that at least one value is assigned to each CSP variable. The soft clauses
guarantee the smallest number of violated constraints. Having more than one
value assigned to a CSP variable, which means that any of those values can be
selected to be in the solution, cannot reduce the number of violated constraints.

Proposition 1. A solution to the MaxSAT instance P ′ corresponds to the min-
imum set of tuples to be removed from P in order to restore satisfiability.

Proof. The hard clauses guarantee that any solution to the partial MaxSAT
instance corresponds to a CSP complete assignment. Each soft clause represents
one tuple in a constraint. Hence, a solution to the partial MaxSAT instance
satisfies the largest number of tuples, which is equivalent to unsatisfying the
smallest number of tuples.

As an additional remark, observe that MaxSAT has been used in the past
to solve the MaxCSP problem [1], thus allowing to know which constraints have
to be removed to restore satisfiability of a CSP. Although the motivation of
this use of MaxSAT clearly differs from the one proposed here, the encoding is

Restoring CSP Satisfiability with MaxSAT 201

similar. Observe that a given assignment to the variables in a constraint scope
can correspond to at most one tuple of the constraint relation, in which case
we say that that that conflict tuple is violated. Hence, the number of violated
constraints corresponds to the number of violated conflict tuples.

3.2 Unsatisfiability-Based MaxSAT Solvers

Unsatisfiability-based MaxSAT solvers [3, 15, 14] represent an approach for solv-
ing MaxSAT problem instances, which contrasts with the traditional MaxSAT
solvers based on branch and bound algorithms [9]. Unsatisfiability-based MaxSAT
solvers iteratively identify Unsatisfiable Subformulas (USs), not necessarily min-
imal, which are relaxed after being identified. Clauses are relaxed by adding one
relaxation variable per clause. The use of cardinality constraints on the variables
used to relax clauses in USs guarantees that a minimum number of clauses is
relaxed. Hence, the MaxSAT solution is computed. The identification of clauses
in USs is iterated until the resulting formula is satisfiable. In this case, one clause
from each identified US is relaxed. A number of variants of MaxSAT algorithms
have been proposed [3, 15, 14], which differ on the actual organization of the
algorithm, and the way cardinality constraints are encoded to clausal form.

The use of unsatisfiability-based MaxSAT solvers has the advantage of having
a solver which identifies unsatisfiable cores while running. Hence, in case a solu-
tion is not found within the allowed CPU time, there is still relevant information
for restoring satisfiability.

In this paper we will be using the unsatisfiability-based MSUnCore [15,
14] version of April 2009. For this reason, we will use the name MSUnCore to
denote the MaxSAT-based algorithm for restoring CSPs satisfiability.

3.3 Muster vs MSUnCore

A few interesting remarks are made bellow in order to stress that MSUnCore
should be considered as an alternative approach to Muster.

We should first clarify how the Muster algorithm could be instrumented to
restore CSPs satisfiability. First, a MUC is identified in a CSP. Second, MUSTs
in the MUC are identified to restore satisfiability, i.e. the required tuples are
removed from the MUC such that it becomes satisfiable. Now these same tuples
are removed from the CSP and the whole process is repeated.

Remark 2. The solution provided by MSUnCore removes a number of tuples
that is equal or smaller than the iterated application of Muster.

Proof. Muster first identifies a MUC and then MUSTs within the MUC. This
does not guarantee removing tuples shared by MUSTs belonging to different
MUCs. (Figure 2 illustrates this issue: unless Muster is lucky enough to remove
tuple (0, 2) or tuple (0, 3), Muster will remove 2 tuples in two iterations, while
MSUnCore will remove only one tuple.)

202 I. Lynce, J. Marques-Silva

Remark 3. The number of Unsatisfiable Sets of Tuples (USTs) identified by
MSUnCore during the search provides a lower bound for the number of tu-
ples to be removed to restore satisfiability.

Proof. Unsatisfiability-based MaxSAT solvers (of which MSUnCore is a con-
crete example), iteratively identify and relax unsatisfiable subformulas (USs).
Moreover, for each iteration for which a US is found, the number of clauses to
relax is increased by 1. Consequently, at each step of the MSUnCore algorithm,
the number of identified USs represents a lower bound on the MaxSAT solution,
and so represents a lower bound on the number of tuples to be removed to restore
satisfiability.

4 Experimental Evaluation

The experimental evaluation was performed over a set of instances from the First
CSP Competition (http://cpai.ucc.ie/05/CallForSolvers.html). This set
of instances corresponds to the set of instances used to test Muster [7].

Table 1 provides the characterization and results for each instance. Each in-
stance is characterized in terms of the number of CSP variables (#vars) and
constraints (#constr). In addition, the CPU time required by Muster to iden-
tify one MUC and one MUST in that MUC is given (1MUC+1MUST), as well
as the CPU time required by an unsatisfiability-based MaxSAT solver (MSUn-
Core [14]) to identify the first UST (1UST), which is not necessarily minimal.
Additional information gives the CPU time required by MSUnCore to restore
satisfiability (AllMUSTs), which implies eliminating all MUSTs, as well as the
total number of tuples to be removed to restore satisfiability (RemovedTuples).
The CPU time was limited to 1000 seconds (TO means timeout). In case only
a few USTs are identified, it is given a lower bound on the number of tuples to
be removed to restore satisfiability.

The results included for Muster where taken from [7]. We should therefore
note that the machine used for running MSUnCore is not significantly different
from the one used for running Muster. Muster was run on a Pentium IV
3GHz under Linux Fedora Core 5, whereas MSUnCore was run on a Intel Xeon
5160 3GHz under RedHat Enterprise Linux WS4. The performance difference is
therefore not significant for the conclusions to be drawn below.

First of all, the results illustrate the feasibility of the proposed approach.
Many times MSUnCore is able to restore satisfiability faster than Muster
is able to identify one MUST in a MUC. Also interesting is to note that most
instances are restored in terms of satisfiability by removing very few tuples. This
supports the claim that removing tuples has a very little impact. For the cases
where MSUnCore is not able to completely restore satisfiability, it is able to
identify a few USTs though, which gives a lower bound on the number of tuples
to be removed. In any case, the identification of the first UST by MSUnCore
is always faster than using Muster. Also, MSUnCore seems to require more
time when the number of tuples to be removed is larger.

Restoring CSP Satisfiability with MaxSAT 203

Table 1. Experimental results

Instance CSP Muster MSUnCore
Name #vars #constr 1MUC+1MUST 1UST AllMUSTs RemovedTuples

composed-25-1-2-0 224 4,440 23.80 0.01 0.04 1
composed-25-1-2-1 224 4,440 26.56 0.01 0.67 3
composed-25-1-25-8 247 4,555 15.10 0.01 0.18 2
composed-75-1-2-1 624 10,440 77.27 0.01 0.17 2
composed-75-1-2-2 624 10,440 81.18 0.01 0.19 2
composed-75-1-25-8 647 10,555 82.78 0.01 0.25 2
composed-75-1-80-6 702 10,830 69.65 0.01 0.16 2
composed-75-1-80-7 702 10,830 392.08 0.01 0.05 1
composed-75-1-80-9 702 10,830 95.17 0.01 0.18 2
qk 10 10 5 add 55 48,640 TO 74.62 92.89 1
qk 10 10 5 mul 105 49,140 2814.28 99.55 111.16 1
qk 8 8 5 add 38 19,624 548.03 6.04 13.44 1
qk 8 8 5 mul 78 19,944 531.90 10.58 19.36 1
graph2 f25 2,245 145,205 853.41 0.36 1.64 1
qa 3 40 800 8.64 0.01 0.06 1
dual ehi-85-297-14 4,111 102,234 43.61 0.14 TO ≥8
dual ehi-85-297-15 4,133 102,433 29.88 0.15 TO ≥8
dual ehi-85-297-16 4,105 102,156 33.73 0.15 TO ≥8
dual ehi-85-297-17 4,102 102,112 47.04 0.15 TO ≥8
dual ehi-85-297-18 4,120 102,324 33.88 0.15 TO ≥8
dual ehi-90-315-21 4,388 108,890 38.16 0.28 TO ≥8
dual ehi-90-315-22 4,368 108,633 48.26 0.26 TO ≥8
dual ehi-90-315-23 4,375 108,766 15.09 0.25 TO ≥8
dual ehi-90-315-24 4,378 108,793 29.99 0.21 TO ≥7
dual ehi-90-315-25 4,398 108,974 34.30 0.20 TO ≥8
scen6 w2 648 513,100 TO 2.51 TO ≥7
scen6 w1 f2 319 274,860 TO 17.25 31.83 1
scen11 f10 4,103 738,719 602.53 1.99 TO ≥4
scen11 f12 4,103 707,375 541.95 1.87 TO ≥3

5 Conclusions and Future Work

This paper suggests the use of MaxSAT to restore CSP satisfiability by removing
the smallest number of constraint tuples. This solution contrasts with a MaxCSP
solution as tuples instead of constraints are removed. We argue that removing
tuples is more adequate for most of the problems due to having a minor impact.

Future work includes adapting MSUnCore for identifying minimal unsatis-
fiable cores. This will have the advantage of identifying MUSTs instead of USTs,
which are more relevant in case the search does not terminate in the given time-
out.

204 I. Lynce, J. Marques-Silva

References

1. J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Modelling Max-CSP as partial
Max-SAT. In International Conference on Theory and Applications of Satisfiability
Testing, pages 1–14, 2008.

2. R. Bruni. On exact selection of minimally unsatisfiable subformulae. Annals of
Mathematics and Artificial Intelligence, 43(1):35–50, 2005.

3. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In International
Conference on Theory and Applications of Satisfiability Testing, pages 252–265,
August 2006.

4. E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe Conference, pages 10886–
10891, 2003.

5. É. Grégoire, B. Mazure, and C. Piette. Extracting MUSes. In European Conference
on Artificial Intelligence, pages 387–391, 2006.

6. É. Grégoire, B. Mazure, and C. Piette. Local-search extraction of MUSes. Con-
straints, 12(3):325–344, 2007.

7. É. Grégoire, B. Mazure, and C. Piette. MUST: Provide a finer-grained explana-
tion of unsatisfiability. In International Conference on Principles and Practice of
Constraint Programming, pages 317–331, 2007.

8. U. Junker. QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In AAAI National Conference on Artificial Intelligence,
pages 167–172, 2004.

9. C. M. Li and F. Manyà. MaxSAT, hard and soft constraints. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, SAT Handbook, pages 613–631. IOS Press,
2009.

10. M. Liffiton, M. Mneimneh, I. Lynce, Z. Andraus, J. Marques-Silva, and K. Sakallah.
A branch and bound algorithm for extracting smallest minimal unsatisfiable sub-
formulas. Constraints, In Press, 2009.

11. M. Liffiton and K. Sakallah. On finding all minimally unsatisfiable subformulas.
In International Conference on Theory and Applications of Satisfiability Testing,
pages 173–186, 2005.

12. M. Liffiton and K. Sakallah. Algorithms for computing minimal unsatisfiable sub-
sets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

13. J. Marques-Silva and I. Lynce. Towards robust CNF encodings of cardinality
constraints. In International Conference on Principles and Practice of Constraint
Programming, pages 483–497, 2007.

14. J. Marques-Silva and V. Manquinho. Towards more effective unsatisfiability-based
maximum satisfiability alg orithms. In International Conference on Theory and
Applications of Satisfiability Testing, pages 225–230, 2008.

15. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using un-
satisfiable cores. In Design, Automation and Test in Europe Conference, pages
408–413, 2008.

16. C. Sinz. Towards an optimal CNF encoding of boolean cardinality constraints. In
International Conference on Principles and Practice of Constraint Programming,
pages 827–831, 2005.

17. T. Walsh. SAT v CSP. In International Conference on Principles and Practice of
Constraint Programming, pages 441–456, 2000.

18. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design, Au-
tomation and Test in Europe Conference, pages 10880–10885, 2003.

