
Using a Contextual Logic Programming
Language to Acess Data in Warehousing Systems

Valéria Pequeno, Salvador Abreu, and João Carlos Moura Pires

CENTRIA, Departamento de Informática,
Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa

2829-516, Caparica, Portugal
http://www.fct.unl.pt

Abstract. Data Warehouses (DWs) are repositories containing the uni-
fied history of an enterprise used by decision makers for performance
measurement and decision support. The data must be Extracted from
heterogeneous information sources, Transformed and integrated to be
Loaded (ETL) into the DW, using ETL tools, which are mainly proce-
dural. This means that the knowledge of the procedures and adopted
policies are hidden in several programs (written in different languages
and paradigms). We propose a development of a framework to declar-
atively model the ETL process, including the semantic correspondence
between schema’s components, to provide a better understanding of the
semantic associated with the ETL process. A prototype, based on con-
textual logic programming with persistence, is presented.

1 Introduction

A Data Warehouse (DW) is an integrated data repository that represents the
unified history of an enterprise at a suitable level of detail to be useful for
analysis [1]. The data must be Extracted from different information sources,
Transformed and integrated to be Loaded (ETL) into the DW. DW data is
then delivered to Data Marts (DM), probably with some more changes. DMs
are subsets of DW data designed to serve specific demands of a particular group
of users. Moreover, a DW or a DM should be created and accessed through
metadata that provides detailed documentation for data in the DW system,
such as applied transformations and origin of data.

The design and population of DW through ETL processes is a difficult and
time-consuming task involving considerable cost in human and financial re-
sources. Data models complexity expands both in sources and in DW, which
gives rise to the difficulty of managing and understanding these models [2, 3];
and data volumes growing at a significant pace. Although there are specialised
tools with graphical interface to do the mapping between the source information
and the DW system, they are mostly procedural. This means that the knowledge
of procedures and policies are hidden in diverse codes, which are totally depen-
dent on experts and technicians. These tools focus strongly on data movement,
as the models are only used as a means to this aim.

140 V. Pequeno, S. Abreu, J.C. Moura Pires

An ETL process, for building a DW system, is not concerned just with map-
ping between schemata, but also with an effective data integration that expresses
a unified view of the enterprise. In this context, it is crucial to have a conceptual
reference model [4–6]. A Reference Model (RM) is an abstract framework that
provides a common semantic that can be used to guide the development of other
models and help with data consistency [5].

It is proposed in [7] to take a declarative approach, which is based on making
clear the relationship between data sources and DW using correspondence asser-
tions and taking into account the Reference Model, independently of the ETL
process involved. Furthermore, the ETL process itself can use this information.

A proof-of-concept prototype, which is the basis of this paper, has been im-
plemented using a standard programming language Prolog, as well as a logic pro-
gramming framework called Information Systems COnstruction language (ISCO).
ISCO is based on a Contextual and Constraint Logic Programing [8]. It allows
the construction of information systems, which can transparently access data
from various heterogeneous sources in a uniform way, like a mediator system [9].
This paper describes as ISCO can be used to access data in a reference model-
based warehousing environment.

The remainder of this paper is structured as follows. Section 2 shows the
workings of conceptual design of the ETL processes as well as the motivation to
this research. Section 3 describes our reference model-based data warehouse ar-
chitecture. Contextual Logic Programming and ISCO tool are briefly approached
in Section 4. Section 5 deals with the issue of modelling and representation in the
data warehouse and ISCO framework. Section 6 illustrates some details of im-
plementation. The paper ends with Section 7, which points out the new features
of the approach presented here and planned future work on this topic.

2 Research motivation

Nowadays, there is a plethora of commercial ETL tools in the market place, but
very few of them are from academic work. Most of the tools suggest reduced
support at the conceptual level.

In the academic area, ETL research for DW environment is focused mainly on
the process modelling concepts, data extraction and transformation, and clean-
ing frameworks [10–12]. So far, the authors of this paper are not aware of any
research that precisely deals with both mappings (structural and instance) be-
tween the sources and the DW, and with the problem of semantic heterogeneity
in a whole conceptual level. There are few prototypes, which usually are imple-
mented to perform technical demonstration and validation of the developed re-
search work [13, 11]. As example of works that developed some implementation,
we quote [4, 14, 15]. Reference in [4] presents a methodology that was applied
in the TELECOM ITALIA framework. Similar to our work, their proposal in-
clude a reference model (cited as “enterprise model”) designed using an Enriched
Entity-Relationship (EER) model. Their prototype focused on logical schemata
and on data movement, any transformation (e.g. restructuring of schema and

Using a Contextual Logic Programming Language to Acess Data 141

values) or mapping of instances were deferred for the logical level. In our ap-
proach everything stays at the conceptual level. References [14, 15] use ontologies
as a common data model to deal with the data integration problem. Skoutas and
Simitsis in [14] use a graph-based representation to define the schemata (source
and DW) and an ontology, described in OWL-DL. Based on this ontology and
the annotated graphs, automated reasoning techniques are used to infer cor-
respondences and conflicts between schemata. Salguero et. al. in [15] extended
OWL with temporal and spatial elements, and used the annotation properties
of OWL to store metadata about the temporal features of information sources.
References [14, 15] mentioned nothing about the mapping of instances, neither
they use a reference model in their architecture.

In a data integration scenario, other than DW, there are several works avail-
able, mainly to establish the structural mapping between the sources and the
global schema (see [16–18] for a survey.); and some works involving the prob-
lem to map instances that represent the same entity in the real-world, the in-
stance matching problem (see [18, 19] for a survey.). Approaches for structural
matching of schemata focus on schema matching, i.e., on (semi-) automatically
identifying semantic correspondences between schema components. In order to
do this, the proposed techniques ([20–22]) exploit several kinds of information,
including schema characteristics, background knowledge from dictionaries and
thesauri, and characteristics of data instances. Approaches for dealing with the
instance matching problem cover several kinds of data, such as object, tuples,
web data, etc., and many different strategies, including look-up tables, heuris-
tics, etc.. These topics were not considered in our research, as we focused on
making explicit the relationship between schemas (in terms of both structure
and instance).

In the ETL market, some approaches focus on code generation from spec-
ifications of mapping and data movement, which are designed by Information
Technology (IT) specialists using graphical interfaces [23]. It is the case, e.g., of
Pentaho Kettle, an open-source ETL tool, which has an easy-to-use graphical
interface and a rich transformation library, but the designer only works with
pieces of structures. Others ETL approaches focus on representation of ETL
processes [23, 24]. Orchid [24], for instance, is a system part of IBM Information
Server that facilitates the conversion from schema mappings to ETL processes
and vice-versa. Some Database Management Systems (DBMS) vendors have em-
bedded ETL capabilities in their products, using the database as ”engine” and
Structured Query Language (SQL) as supporting language.

Also in market ETL tools can be found that do not depend on any partic-
ular database technology, allowing easy integration with Business Intelligence
(BI) projects deployment (e.g. Oracle Data Integration). Further, there are ETL
tools metadata-driven, which are becoming the current trend with ETL data
processing. This approach addresses complexity, meets performance needs, and
also enables re-use. Informatica PowerCenter was the pioneer. Many of these
tools have integrated metadata repositories that can synchronise metadata from

142 V. Pequeno, S. Abreu, J.C. Moura Pires

(source) systems, databases and other BI tools. The metadata is represented by
proprietary scripting languages, which run within a centralised ETL server [25].

Essentially, the ETL tools are procedural. This means that the knowledge
of the procedures and adopted policies are hidden in several programs (written
in different languages and paradigms), as well as it is strongly dependent on
experts and technicians. An other feature in the ETL process is that the data
and business rules evolve requiring the ETL code to be modified and maintained
properly. An additional difficulty occurs when ETL tools are used in a data
integration context, since each one manages metadata differently. Furthermore,
there is not a standard to draw models or to describe data.

This work intends to address the problems stated above. The research focuses
on a declarative approach, since a logic-based formalism allow us to deal with the
complexity of managing data warehouses and the associated ETL processes in
a concise and very perceptible way. Moreover, the semantic integration between
the different data sources is accomplished using correspondence assertions to
relate concepts from various sources.

3 Data Warehouse Architecture

Our proposal for DW organisation, presented in [7], offers a way to express
the existing data models (source, DW, DM, RM) and the relationship between
them. The approach is based on Schema language (LS) and Perspective schema
language (LPS).

Schema language (LS) is used to describe the actual data models (source,
DW, DM, RM). The formal framework focuses on an object-relational paradigm,
which includes definitions adopted by the main concepts of object and relational
models as they are widely accepted in literature – cf. [26, 27].

Perspective schema language (LPS) is used to describe perspective schemata.
A perspective schema is a special kind of schema that describes a data model
(part or whole) (target schema) in terms of other data models (base schemata).
In Fig. 1, PS|DW is a perspective schema whose base schema is the source schema
S and the target schema is the data warehouse schema DW.

A simple sales scenario is used as a running example through out this paper.
The example consists of two schemata: S and PS|DW , shown in Fig. 1. S and
PS|DW include information about sales of products, being that PS|DW contains
summarised information regarding sales.

LPS mainly extends LS with two components: Correspondence Assertions
(CAs) and Matching Functions (MFs). Correspondence Assertions formally spec-
ify the relationship between schema components in a declarative fashion. CAs are
classified in four groups: Property Correspondence Assertion (PCA), Extension
Correspondence Assertion (ECA), Summation Correspondence Assertion (SCA),
and Aggregation Correspondence Assertion (ACA). Property CAs relate prop-
erties of a target schema to the properties of base schemata. The Extension
CAs are used to describe which objects/tuples of a base schema should have a
corresponding semantically equivalent object/tuple in the target schema. The

Using a Contextual Logic Programming Language to Acess Data 143

Fig. 1. Simple sales example - partial representation.

Summation CAs are used to describe the summary of a class/relation whose
instances are related to the instances of another class/relation by breaking them
into logical groups that belong together. They are used to indicate that the rela-
tionship between the classes/relations involve some type of aggregate functions
or a normalisation process. The Aggregation CAs link properties of the target
schema to the properties of the base schema when a SCA is used. Examples of
CAs are shown in Fig. 2.

Property Correspondence Assertions (PCAs)
ψ1: PS|DW [customer] • cust idDW → S [customer] • cidS

ψ2: PS|DW [customer] • cust nameDW → S [customer] • nameS

ψ3: PS|DW [customer] • region descDW → S [customer] • FK2 • regionS

Extension Correspondence Assertion (ECA)
ψ4: PS|DW [customer] → S [customer]

Fig. 2. Examples of correspondence assertion.

In Fig 2, the CA ψ4 defines that the relation customer of perspective schema
PS|DW is semantically equivalent to relation customer of schema S. It means
that for each instance o in S.customer, there is a correspondent instance o′ in
PS|DW.customer such that o and o′ represent the same entity in the real world.
The CAs ψ1, ψ2, and ψ3 define the relationship between the properties of rela-
tions PS|DW.customer and S.customer. The property region descDW is not
directly related to a property of PS|DW.customer, but to the property regionS

of relation PS|DW.region through the path expression FK2 • regionS (FK2 is the
name of the foreign key in PS|DW.customer that refers to PS|DW.region).

Matching functions indicate when two data entities represent the same in-
stance of the real world. These functions, as occur in [28], define a 1:1 correspon-
dence between the objects/tuples in families of corresponding classes/relations.
In particular, the work in [7] based on matching function signatures, being that
their implementation shall be externally provided, since their code is very close
to the application domain.

Fig. 3 illustrates the basic components of the proposed architecture and their
relationships. The schemata RM, DW, DM, S1,...,Sn are defined using the lan-

144 V. Pequeno, S. Abreu, J.C. Moura Pires

Fig. 3. Proposed architecture.

guage LS and represent, respectively, the reference model, the data warehouse, a
data mart, the source schemata S1,...,Sn. The schemata S’1 and S’2 are defined
using the language LPS . They are special kinds of perspective schemata (called
view schema), since the target schema is described in the scope of a perspec-
tive schema, instead of just referring an existing schema. S’1 and S’2 represent,
respectively, the view schemata S’1 (a viewpoint of schema S1), and S’2 (an inte-
grated viewpoint of schemata S2 and S3). The relationships between the target
schema and the base schemata are shown through the perspective schemata
Ps′1|RM ,..., Ps′n|RM ,PRM |DW , and Ps′1,s′2,...,s′n|DW (denoted by arrows).

In [7] is proposed an inference mechanism that, given a set of both schemata
and perspective schemata as base, and a perspective schema as target, can de-
duce a new perspective schema. In context of the Fig. 3, the perspective schema
Ps′1,s′2,...,s′n|DW can be automatically deduced by the inference mechanism, hav-
ing as base the schemata S1,...,Sn and the perspective schemata Ps′1|RM ,...,
Ps′n|RM , and as target the perspective schema PRM |DW . For a more detailed
and formal description of LS and LPS languages, the reader is referred to [29,
30, 7].

4 Contextual Logic Programming and ISCO

Logic Programming languages are akin to relational databases but provide a sig-
nificantly higher expressive power, due to their two fundamental mechanisms of
nondeterminism and unification, both of which form the basis of the Prolog lan-
guage. However, it can be argued that standard Prolog is lacking in several areas,
which include program structuring facilities and data persistence management.
The ISCO programming system addresses both of these issues.
Contexts: the purpose of Contextual Logic Programming (CxLP) was initially
to deal with Prolog’s traditionally flat predicate namespace, which seriously
hindered its usability in larger scale projects. A more recent proposal [31] re-
habilitates the ideas of CxLP by viewing contexts not only as shorthands for

Using a Contextual Logic Programming Language to Acess Data 145

a modular theory but also as the means of providing dynamic attributes which
affect that theory: we are referring to unit arguments, as described in Abreu
and Diaz’s work [32]. It is particularly relevant for our purposes to stress the
context-as-an-implicit-computation aspect of CxLP, which views a context as a
first-class Prolog entity – a term, behaving similarly to an object in what it
carry state (the unit argument terms) and respond to messages (goals evaluated
in context).
Persistence: having persistence in a Logic Programming language is a required
feature if one is to use it to construct actual information systems; this could
conceivably be provided by Prolog’s internal database but is best accounted for
by software designed to handle large quantities of factual information efficiently,
for instance relational database management systems. The semantic proximity
between relational database query languages and logic programming makes the
former a privileged candidate to provide Prolog with persistence.

ISCO [8] is a proposal for Prolog persistence which includes support for
multiple heterogeneous databases and which extends access to technologies other
than relational databases, such as LDAP directory services or, more significantly,
the semantic web in the form of SPARQL queries over OWL ontologies [33].
ISCO has been successfully used in a variety of real-world situations, ranging
from the development of a university information system to text retrieval or
business intelligence analysis tools [8].

ISCO’s approach for interfacing to DBMSs involves providing Prolog declara-
tions for the database relations, which are equivalent to defining a corresponding
predicate, which is then used as if it were originally defined as a set of Prolog
facts. While this approach is convenient, its main weakness resides in its present
inability to relate distinct database goals, effectively performing joins at the
Prolog level. While this may be perceived as a performance-impairing feature, in
practice it’s not the show-stopper it would seem to be because the instantiations
made by the early database goals turn out as restrictions on subsequent goals,
thereby avoiding the filter-over-cartesian-product syndrome.

5 Prototype architecture

The present proposal has implemented a proof-of-concept prototype using a
Prolog language. The prototype comprises six cooperating modules, namely the
schema manager, the inference mechanism, the schema repository, the ISCO
translator, the ISCO-generated applications, and the ISCO repository. The ar-
chitecture of the prototype is depicted in Fig. 4.

The schema manager module was written using native-prolog. It is used by
the designer to manage the schemata (in language LS) as well as the perspective
schemata (in language LPS). The designer, using the schema manager, should
define all source schemata, the data warehouse schema, the reference model
schema, and perspective schemata that he/she needs.

The inference mechanism has been written using native-prolog. It is a rule-
based rewriting system that automatically generates new perspective schemata

146 V. Pequeno, S. Abreu, J.C. Moura Pires

Fig. 4. Prototype architecture.

based on previous ones. It is formed by rules for rewriting CAs, rules for rewriting
match function signatures, and rules for rewriting components that are presents
in CAs or in matching function signatures, being a total of 39 rules.

The ISCO translator performs the mapping between schemata written in LS

or LPS languages to ISCO schemata. Classes or relations of schemata written in
language LS are directly mapped classes in ISCO, which are also called “ classes”
and which compile to regular Prolog access predicates. Classes or relations of
perspective schemata (written in language LPS) are also mapped to ISCO classes
based on CAs and match function signatures. In the current implementation,
when perspective schemata are translated to ISCO schemata, it is assumed that
their base schemata were already mapped to ISCO. ISCO translator has been
written in native prolog. All functions, inclusive of the match functions, declared
in the original perspective schemata are defined in a library called v utils, which
is common to all ISCO schemata created (more details in the next section).

The ISCO-generated applications includes all files that are necessary to access
data from information sources. So, data in any perspective schema mapped to
ISCO, specifically any inferred perspective schema between the DW and its
sources, can be queried in a transparent way, just as in a mediator approach
(more details in the next section).

The schema repository stores both the schemata (in language LS) and per-
spective schemata (in language LPS), including any inferred perspective schema
created by the inference mechanism, while the ISCO repository is used to store
ISCO schemata and ISCO files (libraries, units, etc.).

The next Section present implementation details using the running example
to describes the process of ISCO-generation applications in warehousing envi-
ronments using the implemented prototype.

6 Implementation issues

Each class or relation in the (perspective) schemata are mapped to ISCO classes
using the ISCO translator. The ISCO classes may reflect inheritance, keys, in-
dexes, foreign keys and sequences to name a few. The process involved differ

Using a Contextual Logic Programming Language to Acess Data 147

enough, depending on whether the original schema was written in LS language
or is a perspective schema.

In the case of schemata defined in LS language, a declaration is added to
ISCO schema in order to provide ISCO with the necessary information to access
an external data source, such as an ODBC-accessed database. In the context of
the running example (see Fig. 1), the ISCO schema that is mapped from schema
S shall contain the clausule:

external(S, postgres(S)).

This clausule means that S is an outside database hosted in PostgreSQL.
All classes or relations in the original schema are simply mapped to ISCO

classes, which should be declared as external and mutable. External means that
the class has been created in an independent database and mutable means that
its instances can change. For instance, the relation S.customer is mapped to
ISCO as illustrated in Fig 5.

01. external(S,customer),

02. mutable class customer.

03. cids: int. key.

04. names: text.

05. contacts: text.

06. reg ids: region.reg ids.

Fig. 5. Example of the mapping of a relation (in a schema) to a ISCO class.

In Fig. 5, lines 1 and 2 mean that the instances of ISCO class customer
are in database S, class customer, line 3 means that the property cidS is an
integer number and a primary key, and line 6 means that the property reg idS

is a foreign key that refers to class region through property reg idS . Note
that, in this example, the ISCO class and the class in the database have the
same name, but could be different ones. The ISCO class customer defines the
predicate customer/4, which behaves as a database predicate but relies on an
external system (in this case the PostgreSQL ORDBMS) to provide the actual
facts. In the current implementation, it is assumed that all instances of ISCO
classes have an object identity (OID), which is a integer number automatically
generated by the system.

In the case of perspective schemata, the classes or relations are usually
mapped to computed classes. It means that the class instances will be gener-
ated each time that a query is made to the class, similar to the concept of view
in SQL. Computed classes are expected to contain one or more rules. These rules
define how the computed class instances are obtained and always come after the
computed class definition. In the body of each rule, the variables, which repre-
sent the computed class arguments, must have the same name of the respective

148 V. Pequeno, S. Abreu, J.C. Moura Pires

argument that they represent and they must be all in uppercase. This is neces-
sary in order for Prolog to link each variable with its respective computed class
argument correctly. Classes or relations in the perspective schema are mapped to
computed classes in ISCO when they are related to classes or relations in a base
schema through some extension correspondence assertion (ECA). A example is
illustrated in Fig. 6.

01. computed class customer.

02. cust id skdw: int. key.

03. cust iddw: int.

04. cust namedw: text.

05. region descdw: text.

06. rule:- s:> customer@(oid=Osource,cids=CUST IDDW,

names=CUST NAMEDW,reg ids=Var1),

07. s:> region@(reg ids=Var1,regions=Var2),

08. REGION DESCDW=Var2,

09. CUST ID SKDW=〈〈createSKey〉〉,
10. OID=〈〈createNewOID〉〉.

Fig. 6. Example of the mapping of a relation (in a perspective schema) to a ISCO
class.

In Fig 6, line 6 defines a query to the ISCO class customer in source schema
S. This query is obtained using the CAs ψ1−ψ4 (see Fig. 2), being that the values
of cust iddw and cust namedw are acquired directly from this query while
the value of region descdw requires an additional query to ISCO class region
in schema S (lines 7 and 8). Lines 9 and 10 define the necessary steps to generate,
respectively, surrogate keys and oids for the computed class. The surrogate key
is an integer number automatically generated based on the object identity in
variable “Osource”. The oid for the computed class (OID) is a compound object
identity with the following structure:

oid(schema,class,oids),

being that class is the name of the computed class which OID belongs, schema
is the name of the schema which class belongs, and oids is a list of compound
object identities in the form of (S′,C′,o′), with C′ being the name of a class or
relation in a schema S′ containing the object identity o’ from what the OID is
derived. The object identity o′, in turn, can be a compound object identity or
a simple object identity (an integer number). For example, OIDs for computed
classes may look like:

oid(PS|DW ,customer,oid(S,customer,667789))

Using a Contextual Logic Programming Language to Acess Data 149

which means the object in the computed class customer is derived from object
in S.customer whose OID is 667789.

Once having the ISCO schemata, the following phase is to generate a GNU
Prolog/CX executable containing the native-code executable version of all ISCO
predicates. GNU Prolog/CX compiles Prolog (and ISCO) programs to native
executables. Each schema and perspective schema described in ISCO, as well
the library v utils, will correspond to units whose terms can be instantiated and
collected into a list to form a context. A set of operations and operators are
available in GNU Prolog/CX to construct contexts, being the o more usual in
our application the context extension operation given by the operator :>. The
goal U :> G extends the current context with the unit U and resolves G in the
new context, as if it were regular Prolog. For instance, to make a interrogation
to the computed class customer, we can use the following syntax:

v utils :> PS|DW :> customer(A,B,C,D).

In this goal, we start by extending the initially empty context with unit v utils.
After, this new context is again extended with the unit PS|DW , and it in the
latter context that goal customer(A,B,C,D) is derived.

7 Conclusions and Future Work

In this article we have discussed an implementation that permits the genera-
tion of applications which transparently access source information in a reference
model-based warehousing system based on a logic-based formalism. We had ac-
cess to a system which already provides a Logic-based programming layer while
being able to transparently access facts stored in existing RDBMs. Having a logic
programming appearance lay down a setting where programs are first-class ob-
jects on which meta-reasoning may be performed, including proofs of correctness
or explanations for results.

The prototype has been developed using a contextual logic programming
with persistence, called ISCO [8]. ISCO provides: a) high levels of performance,
by virtue of being derived from GNU-Prolog; b) expressiveness, due to the use
of constraint logic programming; c) simplicity; d) persistence; and e) structured
code, as a result of using Contextual Logic Programming constructs. Constraints
(over finite domains) are used to generate more efficient SQL codes for database
predicates, besides being a form of search-space pruning which is complementary
to backtracking in that propagation works as an a-priori filter on the search.

ISCO allows access to heterogeneous data sources and to perform arbitrary
computations. User-queries can be done in ISCO, in a transparent way to access
the information sources, even the data of the DW schema. This feature can
be useful in some situations, although a mediator strategy in a DW context, in
general, may not be appropriate, due to particular nature of the DW. Specifically,
this work can be used in applications that hide from their users the complexity
involved in accessing multiple data sources, since these sources are in databases
that can be queried via remote access in real-time.

150 V. Pequeno, S. Abreu, J.C. Moura Pires

Some improvements of our prototype will be done, namely: to use foreign
keys in ISCO classes with aggregate functions, or derived by a normalisation
process; improvement the generation of surrogate keys. The final prototype will
be applied to various situations, some synthetic and others real, as a means of
providing experimental validation of the usefulness of the chosen approaches.

For future work, we are presently working on how the perspective schemata
can be used to automate the materialisation of the ETL process. Various other
on-going research is related to this work, such as: a) management of schema
versioning using contexts in ISCO; and b) incorporating aspects from temporal
contextual logic programming [34] to deal with evolving data and schemata, and
so to further reduce the complexity of the system, by allowing the temporal
component to be abstracted. Another important direction for future work is
to develop a graphical user-friendly interface to declare the schemata in our
language, and thus, hide some syntax details.

References

1. Inmon, W.H.: Building the data warehouse. 4th edn. Wiley Publishing (2005)
2. Pérez, J.M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: A relevance-extended

multi-dimensional model for a data warehouse contextualized with documents.
In: DOLAP’05: Proc. of the 8th ACM Intl. Workshop on Data Warehousing and
OLAP, USA, ACM (2005) 19–28

3. Matias, R., Moura-Pires, J.: Revisiting the olap interaction to cope with spatial
data and spatial data analysis. In: ICEIS’07 - Proc. of the 9th Intl. Conf. on
Enterprise Information Systems. Volume DISI. (2007) 157–163

4. Calvanese, D., Dragone, L., Nardi, D., Rosati, R., Trisolini, S.M.: Enterprise mod-
eling and data warehousing in TELECOM ITALIA. Inf. Syst. 31(1) (2006) 1–32

5. Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design - Rela-
tional and Dimensional Techniques. Wiley Publishing (2003)

6. Knackstedt, R., Klose, K.: Configurative reference model-based development of
data warehouse systems. Idea group publishing (2005) 32–39

7. Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL
process. In: Intl. Conf. on Management Information Systems, France (June 2009)

8. Abreu, S., Nogueira, V.: Using a logic programming language with persistence and
contexts. In: INAP’05: 16th Intl. Conf. on applications of declarative programming
and knowledge management. Volume 4369 of Lecture Notes in Computer Science.,
Springer (2006) 38–47 (Revised Selected Papers).

9. Wiederhold, G.: Mediators in the architecture of future information systems. In:
IEEE Computer. Volume 25(3). (1992) 38–49

10. Lujn-mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data ware-
house design with UML. In: ER’04: 23rd Intl. Conf. on Conceptual Modeling,
Springer (2004) 191–204

11. Raman, V., Hellerstein, J.: Potter’s wheel: An interactive data cleaning system.
In: 27th VLDB Conference, Italy (2001)

12. Albrecht, A., Naumann, F.: Managing etl processes. In: NTII’08: Intl. Workshop
on New Trends in Information Integration, New Zealand (2008) 12–15

13. Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N., Sellis, T.K.: ARK-
TOS: towards the modeling, design, control and execution. Information Systems
26(8) (2001) 537–561

Using a Contextual Logic Programming Language to Acess Data 151

14. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of ETL processes for
both structured and semi-structured data. Int. J. Semantic Web Inf. Syst. 3(4)
(2007) 1–24

15. Salguero, A., Araque, F., Delgado, C.: Ontology based framework for data inte-
gration. WSEAS Trans. Info. Sci. and App. 5(6) (2008) 953–962

16. Hai, Do, H.: Schema Matching and Mapping-based Data Integration: Architecture,
Approaches and Evaluation. VDM Verlag, Germany (2007)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4) (2001) 334–350

18. Doan, A., Halevy, A.Y.: Semantic integration research in the database community:
A brief survey. AI Magazine 26(1) (2005) 83–94

19. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1) (2008) 1–41
20. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for prob-

abilistic schema matching. Inf. Process. Manage. 43(3) (2007) 552–576
21. Chiticariu, L., Hernández, M.A., Kolaitis, P.G., Popa, L.: Semi-automatic schema

integration in clio. In: VLDB ’07: Proceedings of the 33rd international conference
on Very large data bases, VLDB Endowment (2007) 1326–1329

22. Engmann, D., Maßmann, S.: Instance matching with COMA++. In: BTW Work-
shops. (2007) 28–37

23. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons
(2004)

24. Dessloch, S., Hernandez, M., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Inte-
grating schema mapping and ETL. ICDE’08: IEEE 24th International Conference
on Data Engineering (April 2008) 1307–1316

25. Raminhos, R.F.: Extraction and transformation of data from semi-structured text
files using a declarative approach. Master’s thesis, Faculdade de Ciências e Tec-
nologia of the Universidade Nova de Lisboa (2007)

26. Codd, E.F.: A relational model of data for large shared data banks. In: Commu-
nications of the ACM. (1970) 377–387

27. Cattell, R.G., Barry, D., eds.: The Object Database Standard ODMG 3.0. Morgan
Kaufmann Publishers (2000)

28. Zhou, G., Hull, R., King, R.: Generating data integration mediators that use
materialization. J. Intell. Inf. Syst. 6(2/3) (May 1996) 199–221

29. Pequeno, V.M., Pires, J.C.G.M.: A formal object-relational data warehouse model.
Technical report, Universidade Nova de Lisboa (November 2007)

30. Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL
process. Technical report, Universidade Nova de Lisboa (2009)

31. Abreu, S., Diaz, D.: Objective: in Minimum Context. In Palamidessi, C., ed.:
ICLP’03: 19th Intl. Conf. in Logic Programming. Volume 2916 of Lecture Notes in
Computer Science., India, Springer-Verlag (December 2003) 128–147

32. Abreu, S., Diaz, D.: Objective: in minimum context. In Palamidessi, C., ed.: In
Proc. of 19th Intl. Conf. in Logic Programming (ICLP 2003), Lecture Notes in
Computer Science 2916, Springer-Verlag (2003) 128–147

33. Lopes, N., Fernandes, C., Abreu, S.: Representing and Querying Multiple On-
tologies with Contextual Logic Programming. ComSIS: Computer Science and
Information Systems 05(02) (December 2008)

34. Nogueira, V., Abreu, S.: Temporal contextual logic programming. Electron. Notes
Theor. Comput. Sci. 177 (2007) 219–233

