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Abstract. We propose a new approach for implementing P-log using XASP, the
interface of XSB with Smodels. By using the tabling mechanism of XSB, our
system is most of the times faster than P-log. In addition, our implementation has
query features not supported by P-log, as well as new set operations for domain
definition.

1 Introduction

Probabilistic reasoning became the major approach for reasoning under uncertainty.
From the standpoint of logic and logic programming, the addition of probabilities al-
lows us to represent and reason about finitely varying degrees of belief. From the stand-
point of probability and Bayesian Networks, the addition of rule-based representations
allows the creation and modification of probabilistic models more easily. The combina-
tion of these two lines of research has been attempted in the recent years, resulting in
formalisms with both logical and probabilistic knowledge representation capabilities.

One of the approaches is Pearl’s probabilistic causal models [8]. Many of the diffi-
culties in probabilistic reasoning on Pearl’s formalism lie not only in the use of proba-
bilistic models, but in their formulation relying on propositional reasoning. Other for-
malisms have proposed the integration between logic and probability such as Pooles
Probabilistic Horn Abduction (PHA) [3], the Independent Choice Logic (ICL) [4, 5],
the LPAD formalism [9], and the recent language P-log [1].

P-log is a declarative language based on a logic formalism for probabilistic reason-
ing and action. P-log uses Answer Set Programming (ASP) as its logical and Causal
Bayesian Networks (CBN) as its probabilistic foundations. A P-log program consists
of a logical part and a probabilistic part. The logical part represents knowledge which
determines the possible worlds of the program, including ASP rules and declarations
of random attributes, while the probabilistic part contains probability declarations (pr-
atoms) which determine the probabilities of those worlds [1, 2]. Although ASP has been
proven to be a useful paradigm for solving a variety of combinatorial problems, its non-
relevance property [11] makes the P-log system sometimes computationally redundant.

In this paper, we explore a new approach for implementing P-log using XASP, the
interface of XSB with Smodels [11] – an answer set solver. With XASP, the relevance
of the system is maintained [7]. Moreover, by using the tabling mechanism of XSB
our system is most of the times faster than P-log. In addition, our implementation has
new kind of queries not supported by P-log, as well as new set operations for domain
definition.
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The rest of this paper is organized as follows. Section 2 provides a description of the
syntax and semantics of the extended P-log system, following closely the formalisms
in [1, 2]. Section 3 exhibits some examples. Section 4 outlines the implementation, pro-
viding benchmarks comparing P-log(ASP) (original P-log implementation based on [1,
2]) and P-log(XSB) (the new implementation). The paper finishes with conclusions and
directions for future work.

2 Extended P-log

In this section, the syntax and semantics of extended P-log programs are defined, being
compatible with those ones of the original P-log [1]. The extended syntax has constructs
for declaring new sorts by union or intersection of other sorts. This syntactic sugar
enables a more declarative representation of many practical problems; for instance, the
domain of students who attend both physics and math courses is the intersection of
participants in each course, or the domain of cards in the poker game is the union of
hearts, spades, diamonds and clubs. In addition, by using XASP, the logical part can
use arbitrary XSB prolog code, thus, allowing for the representation of more complex
problems that are more difficult or even impossible to express in the original P-log
language. The semantics is given by an adapted program transformation into XASP,
including the new set operations.

2.1 Syntax

In general, a P-log programΠ consists of a sorted signature, declarations, a regular part,
a set of random selection rules, a probabilistic information part, and a set of observations
and actions.
Sorted signature and Declaration The sorted signature Σ of Π contains a set of con-
stant symbols and term-building function symbols, which are used to form terms in the
usual way. Additionally, the signature contains a collection of special function symbols
called attributes. Attribute terms are expressions of the form a(t̄), where a is an attribute
and t̄ is a vector of terms of the sorts required by a. A literal is an atomic statement, p,
or its explicit negation, neg p. In addition, p is considered to be the explicit negation of
neg p. The expressions p and not p where not is the default negation of ASP are called
extended literals.

The declaration part of a P-log program is defined as a collection of sorts and
sort declarations of attributes. A sort c can be defined by listing all the elements c =
{x1, ..., xn}, by specifying the range of values c = {L..U} where L and U are the
integer lower bound and upper bound, or even by specifying range of values of mem-
bers c = {h(L..U)} where h/1 is a unary predicate. We are also able to define a sort
by arbitrarily mixing the previous constructions, e.g. c = {x1, .., xn, L..U, h(M..N)}.
In addition, in the extended version, it is allowed to declare union and intersection of
sorts: c = union(c1, ...., cn) and c = intersection(c1, ..., cn), respectively, where
ci, 1 ≤ i ≤ n, are declared sorts.

Declaration of an attribute a with domain c1 × ...× cn and range c0 is represented
by: a : c1× ...× cn --> c0. If a has no domain parameter, we simply write a : c0. The
range of a is denoted by range(a).
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Regular part This part of a P-log program consists of a collection of XSB Prolog rules,
facts and integrity constraints (IC), formed by literals of Σ. An IC is encoded as a XSB
rule with the false literal in the head.
Random Selection Rule This is a rule for attribute a having the form:

random(RandomName, a(t̄), DynamicRange) :- Body

This means the attribute instance a(t̄) is random if the preconditions in Body are sat-
isfied. The DynamicRange allows to restrict the default range for random attributes.
TheRandomName is a syntactic mechanism used to link random attributes to the cor-
responding probabilities. If there is no precondition, we simply put true in the body.
A constant full can be used in DynamicRange to signal that the dynamic domain
equals to range(a).
Probabilistic Information Information about probabilities of random attribute in-
stances a(t̄) taking particular value y is given by probability atoms (or pa-atoms for
short) which have the following form:

pa(RandomName, a(t̄, y), d(A,B)) :- Body.

It means if Body were true, and the value of a(t̄) were selected by a rule named
RandomName, then Body would cause a(t̄) = y with probability A

B .

Example 1 (Dice [1]). There are two dice, d1 and d2, belonging to Mike and John,
respectively. Each dice has scores from 1 through 6, and will be rolled once. The dice
owned by Mike is biased to 6 with probability 1/4. This scenario can be coded with the
following P-log(XSB) program Πdice

1. score = {1..6}. dice = {d1,d2}.
2. owns(d1,mike). owns(d2,john).
3. roll : dice --> score.
4. random(r(D), roll(D), full) :- true.
5. pa(r(D), roll(D,6), d(1,4)) :- owns(D,mike).

Two sorts score and roll of the signature of Πdice are declared in lines 1. The regular
part contains two facts in line 2 saying that dice d1 belongs to Mike and d2 belongs
to John. Line 3 is the declaration of attribute roll mapping each dice to a score. Line
4 states that the distribution of attribute roll is random. Line 5 belongs to probabilistic
information part, saying that the dice owned by Mike is biased to 6 with probability 1

4 .
Note that the probability of an atom a(t̄, y) will be directly assigned if the corre-

sponding pa/3 atom is in the head of some pa-rule with a true body. To define proba-
bilities of the remaining atoms we assume that by default, all values of a given attribute
which are not assigned a probability are equally likely. For instance, probabilities of
rolling Mike’s dice to be i, i ∈ {1, 2, 3, 4, 5}, are the same and equal to 3/20.

Observations and Actions Observations and actions are, respectively, statements of
the forms obs(l) and do(l), where l is a literal. Observations are used to record the out-
comes of random events, i.e. random attributes and attributes dependent on them. The
dice domain may, for instance, contain obs(roll(d1,4)) to record the outcome
of rolling dice d1. The statement do(a(t, y)) indicates that a(t) = y is made true as
the result of a deliberate (non-random) action. For instance, do(roll(d1,4)) may
indicate that d1 was simply put on the table in the described position.
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2.2 Semantics

The semantics is defined in two stages. First it defines a mapping of the logical part of
Π into its XASP counterpart τ(Π). The answer sets of τ(Π) plays the role of possible
worlds of Π . Next the probabilistic part of τ(Π) is used to define a measure over
the possible worlds as well as the probability of (complex) formulas. This part of the
semantics exactly follows the one in [1].

The logical part of a P-log program Π is transformed into its XASP counterpart
τ(Π) by the following five steps:

1. Sort declaration:
– for every sort declaration c = {x1, .., xn} of Π , τ(Π) contains c(xi) for each

1 ≤ i ≤ n.
– for every sort declaration c = {L..U} of Π , τ(Π) contains c(i) where L ≤
i ≤ U , with integers L ≤ U .

– for every sort declaration c = {h(L..U)} of Π , τ(Π) contains c(h(i)) where
L ≤ i ≤ U , with integers L ≤ U .

– for every sort declaration c = union(c1, ..., cn), τ(Π) contains the rules
c(X) : − ci(X) for each 1 ≤ i ≤ n.

– for every sort declaration c = intersection(c1, ..., cn), τ(Π) contains the rule
c(X) : − c1(X), . . . , cn(X).

2. Regular part: For each attribute term a(t̄), τ(Π) contains the rules:
– false :- a(t̄, Y 1), a(t̄, Y 2), Y 1\ = Y 2.

which is to guarantee that in each answer set a(t̄) has at most one value.
– a(t̄, y) :- do(a(t̄, y)).

which is to guarantee that the atoms which are made true by a deliberate action
are indeed true.

3. Random selection:
– For attribute a, τ(Π) contains the rule: intervene(a(t̄)) :- do(a(t̄, Y )).
– Each random selection rule

random(RanName, a(t̄), DynRange) :- Body.
is translated into:
• a(t̄, Y ) :- tnot(intervene(a(t̄))), tnot(neg a(t̄, Y )), Body.
• neg a(t̄, Y ) :- tnot(intervene(a(t̄))), tnot(a(t̄, Y )), Body.
• atLeastOne(RanName, t̄) :- a(t̄, Y ).
• false :- tnot(atLeastOne(RanName, t̄)).
• if DynRange is full, τ(Π) contains
pd(RanName, a(t̄, Y )) :- tnot(intervene(a(t̄))), Body.

• if DynRange is not full, τ(Π) contains two rules
false :- a(t̄, Y ), tnot(DynRange), Body, tnot(intervene(a(t̄))).
pd(RanName, a(t̄, Y )) :- tnot(intervene(a(t̄))), DynRange, Body.

4. Observation and action: τ(Π) contains actions and observations of Π .
5. For each literal l, τ(Π) contains the rule: false :- obs(l), tnot(l).

Similarly to ASP, in the body of each XASP rule additional domain predicates are
necessary for grounding variables appeared in non-domain predicates (see example 2
for concrete details). In the transformation the XSB default table negation operator
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tnot/1 is used. In the transformation of random selection the auxiliary predicate pd/2
is used to define default probabilities, recording for each world what are the possi-
ble values Y for random attribute term a(t̄) . The execution of a deliberate action on
a(t̄) makes the corresponding intervene(a(t̄)) true, thereby blocking the generation
of random alternatives for attribute a(t̄). Also notice that our semantics is equivalent to
the semantics defined in [1] for the original P-log syntax. In fact, we reformulated the
transformation from the original paper to adapt it to the XASP syntax. For example,
the cardinality expression of Smodels language used in the original paper is replaced
with an even loop to generate stable models and rules for determining upper and lower
bounds. The rationale for the transformation can be found in [1].

Notice that the probabilistic information part of a P-log program, consisting of pa-
rules, is kept unchanged through the transformation

Example 2. For better understanding of the transformation, we provide here the result-
ing transformed program τ(Πdice) of Πdice described in example 1:

1. score(1). score(2). score(3). score(4). score(5). score(6).
2. dice(d1). dice(d2). owns(d1,mike). owns(d2,john).
3. false:-score(X),score(Y),dice(D),roll(D,X),roll(D,Y),X \= Y.
4. roll(D,X) :- dice(D), score(X), do(roll(D,X)).
5. intervene(roll(D)):-dice(D),score(X),do(roll(D,X)).
6. roll(D,X) :- dice(D), score(X),

tnot(intervene(roll(D))),tnot(neg_roll(D,X)).
7. neg_roll(D,X) :- dice(D), score(X),

tnot(intervene(roll(D))),tnot(roll(D,X)).
8. atLeastOne(r(D),D) :- dice(D), score(X), roll(D,X).
9. false :- dice(D), tnot(atLeastOne(r(D),D)).
10.pd(r(D),roll(D,X)) :- dice(D), score(X),

tnot(intervene(roll(D,X))).
11.pa(r(D),roll(D,6),d(1,4)) :- owns(D,mike).

Lines 1-2 are the transformation of sorts declaration. Lines 3-4 are the resulting code
of the transformation for attribute roll (regular part). Lines 5-10 are the result of the
transformation for the random selection part in line 5 ofΠdice. Line 11 is the probabilis-
tic information part, being kept unchanged from the original program (line 6 of Πdice).
Notice that the domain predicates score/1 and dice/1 were added in some rules (lines
3-10) for variables grounding purpose.

3 Examples of Application

In this section we describe several examples that have been tested in P-log(ASP) and
P-log(XSB). Several problems are easily solved using probabilistic knowledge, but here
we focus on how can inferences be drawn logically.

3.1 Cards Problem

Suppose there is a deck of cards divided into spades, hearts, diamonds and clubs. Each
suit contains a numbers and pictures. Numbers are from 1 to 10 and pictures are jack,
queen and king. What is the probability of having single pair at hand [16]?
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1. heart = {h(1..10), h(jack), h(queen), h(king)}.
spade = {s(1..10), s(jack), s(queen), s(king)}.
diamond = {d(1..10), d(jack), d(queen), d(king)}.
club = {c(1..10), c(jack), c(queen), c(king)}.

2. cards = union(heart,spade,diamond,club).
3. number = {1..5}.
4. draw : number --> cards.
5. random(r(N),draw(N),full):- true.
6. false :- same.
7. same :- draw(N1,X), draw(N2,X), N1 \= N2.
8. pair(N1,N2):-draw(N1,X1),draw(N2,X2),N1\=N2,sameValue(X1,X2).
9. sameValue(X,Y) :- X =.. [_|V], Y =.. [_|V].
10.singlePair :-

findall(pair(X,Y), pair(X,Y),[pair(C1,C2),pair(C2,C1)]).

Fig. 1: Cards Example

The corresponding P-log(XSB) program is shown in Figure 1. Lines 1-4 are dec-
laration of attributes. Line 5 is a random selection rule, saying that the distribution of
each attribute drawi is random. In this example, the same card cannot be drawn twice.
This condition is modelled by an ICt in line 6. Lines 8-10 capture the existence of a
single pair, namely, predicate pair(N1, N2) in line 8 says that the two different draw-
ings N1-th and N2-th provide a pair, i.e. give the same value (defined by predicate
sameV alue/2 in line 9), and line 10 says that there is only one pair, i.e. there are ex-
actly two different but commutative pairs of drawings that hold (implemented using
XSB built-in predicate findall/3).

Notice that in this example we use some built-in predicates of XSB that are
not supported by ASP such as (=..)/2 and findall/3. This feature enables our sys-
tem to be able to model more complicated problems. To model, for example, the
rule for sameV alue/2 in line 9, in P-log(ASP) we must use a number of rules for
grounding that rule. Probability of drawing a single pair is obtained by the query ?-
pr(singlePair,Vp). The system is supposed to provide the answer [16]: Vp =
0.422569. However, our system only manages to give the answer for the problem with
smaller size. Further discussion can be found in subsection 4.2.

3.2 Wetgrass Problem

Consider the Wetgrass example [10] in which all nodes are boolean random variables,
where the two possible values are denoted by t(true) and f(false). The corresponding
Bayesian Network can be found in Figure 2.

The corresponding P-log(XSB) program is shown in Figure 3. As we see in Figure 2,
the event grass is wet (W=true) has two possible causes: either the water sprinkler is
on (S=true) or it is raining (R=true). The domain declarations are described in lines
1-2. The attributes sprinkler, rain, cloudy and wetgrass are distributed randomly (line
3). The probabilistic relationships are captured by the Conditional Probability Tables



Tabling for P-log Probabilistic Query Evaluation 121

C C = 0 C = 1
0.5 0.5

Cloudy

S S = 0 S = 1
C = 0 0.5 0.5
C = 1 0.9 0.1

Sprinkler
R R = 0 R = 1

C = 0 0.8 0.2
C = 1 0.2 0.8

Rain

W S R W = 0 W = 1
0 0 1 0
1 0 0.1 0.9
0 1 0.1 0.9
1 1 0.01 0.99

Wetgrass

Fig. 2: Bayesian Network for Wetgrass Example

(CPTs) in the diagram. The probabilistic information pa-clauses in line 4 represent the
conditional probabilities according to the CPTs table.

Suppose we observe that grass is wet. We want to know which one is the
more likely cause of wetgrass, raining or sprinkler. The probability of raining be-
ing true given wetgrass is true can be easily obtained mathematically Pr(R =
true|W = true) = 0.7079. Similarly, the probability of sprinkler being on given
wetgrass is true: Pr(S = true|W = true) = 0.4298. These exact values can be
found with the queries ?- pr(rain(t)’|’obs(wetgrass(t)),PR) and ?-
pr(sprinkler(t)’|’obs(wetgrass(t)),PS) 1, respectively.

Probabilistic Reasoning with P-log(XSB) We show how P-log(XSB) can be used as
a meta-level language for probabilistic reasoning. The example is extended with the
scenario represented in lines 5-9. Imagine that some students have finished their lectures
and they are planning to refresh themselves. They have to make decision on one of two
choices: going to the beach or the cinema (line 5). If it is not raining, they choose to go
to the beach (lines 6–7). Otherwise going to the cinema is the only option (line 8). The
probability of raining to be true is higher if it was raining last night (line 9). Based on
the observation, this morning they saw the grass was wet. So, what will they choose for
their refreshing moment?

This can be done with the query ?-refreshing(X). The system provides the
answer: X = goingToCinema since it was raining (line 8), which is based on the fact
that the probability of raining given that grass is wet is higher than the one of sprinkler
being on under the same condition (line 9).

3.3 Random blocks problem [15, 14]

A problem in the random blocks domain consists of a collection of locations, knowl-
edge of which locations left of and below each other, a set of blocks, and knowledge

1 The probability of A given B is computed using the query ?- pr(A ’|’ B, V).
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1. bool={t,f}.
2. cloudy:bool. rain:bool. sprinkler:bool. wetgrass:bool.
3. random(rc, cloudy, full). random(rr, rain, full).

random(rs, sprinkler, full). random(rw, wetgrass, full).
4. pa(rc,cloudy(t),d(1,2)). pa(rc,cloudy(f),d(1,2)).

pa(rs,sprinkler(t),d(1,2)) :- cloudy(f).
pa(rs,sprinkler(t),d(1,10)) :- cloudy(t).
pa(rr,rain(t),d(2,10)) :- cloudy(f).
pa(rr,rain(t),d(8,10)) :- cloudy(t).
pa(rw,wetgrass(t),d(0,1)) :- sprinkler(f),rain(f).
pa(rw,wetgrass(t),d(9,10)) :- sprinkler(t),rain(f).
pa(rw,wetgrass(t),d(9,10)) :- sprinkler(f),rain(t).
pa(rw,wetgrass(t),d(99,100)) :- sprinkler(t),rain(t).

5. refreshing(goingToBeach) :- goingToBeach.
refreshing(goingToCinema):- goingToCinema.

6. goingToBeach :- sunny.
7. sunny :- not raining.
8. goingToCinema :- raining.
9. raining :- pr(rain(t) ’|’ obs(wetgrass(t)),PR),

pr(sprinkler(t)’|’obs(wetgrass(t)),PS), PR > PS.

Fig. 3: Wetgrass example

of a location for each block. This problem was introduced in [15] to demonstrate the
performance of ACE , a system for probabilistic inference based on relational BNs. In
[14] it was used as a benchmark to compare latest P-log [12] to ACE (P-log is faster).

We use that problem to compare our system to the latest Plog. The representation
of the problem in Plog(XSB) syntax is straightforwardly adapted from the one in P-
log(ASP) [14]. Due to lack of space we will not show it here.

4 Implementation of the P-log(XSB) system

Our system consists of two main modules: transformation and probabilistic informa-
tion processing. The first module transforms an original P-log(XSB) program into an
appropriate form for further computation by the second module. Both modules were
developed on top of XSB Prolog [20], an extensively used and state-of-the-art logic
programming inference engine implementation, supporting the Well-Founded Seman-
tics (WFS) for normal logic programs.

The tabling mechanism [19] used by XSB not only provides significant decrease
in time complexity of logic program evaluation, but also allows for extending WFS
to other non-monotonic semantics. An example of this is the XASP interface (stand-
ing for XSB Answer Set Programming) which extends WFS with Smodels to compute
stable models [6]. In XASP, only the relevant part to the query of the program is sent
to Smodels for evaluation [11]. This allows us to maintain the relevance property for
queries over programs, something that ASP does not comply to [7]. ASP obtains all the
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complete stable models for the whole program, which might contain redundant infor-
mation for the evaluation of a particular query. Our approach of using XASP interface
sidesteps this issue, sending to Smodels only part of the program that is relevant to the
query.

The transformation module transforms the original P-log (XSB) program into a
XASP program using five transformation steps described in section 2. This program is
then used as the input of the Probabilistic Processing module which will compute all
stable models with necessary information for dealing with the query. Only predicates
for random attributes and probabilistic information, which have been coded by pred-
icates pd/2 as the default probability and pa/3 as the assigned probability are kept
in each stable model. In the current version of XASP, those literals are collected by a
(posterior) filter after all stable models were generated. This is improved in our system
by (ourselves) equipping XASP with a prior filter which enables it to generate stable
models with literals by need.

Having obtained stable models with necessary information, the system is ready
to answer queries about probabilistic information coded inside the program. Besides
queries in form of ASP formulas, our system was extended to be able to answer queries
in the form of Prolog predicates which can be defined in a variety of ways. The code
for defining the predicate can be included in the original P-log(XSB) program, in a sep-
arated XSB prolog program or even asserted into the system. This feature enables us to
give very complicated queries which is difficult or even impossible for P-log(ASP) to
tackle, e.g. singlerPair in the Cards problem. The implementation of this new feature
can be done easily with XASP, using the query as a filter for ruling out unsatisfied stable
models. In addition, arguing that the system’s users usually need to query the program
with a number of goals for different kinds of probabilistic information, the system is
optimized for answering several queries. In this way the meta-queries illustrated in the
previous Wetgrass example can be executed faster, enabling the construction of more
sophisticated knowledge bases making use of probabilistic reasoning. Technically, this
has been done by memorizing predicates used for processing queries. That means for
most of predicates necessary for processing probabilistic queries, we only have to com-
pute them once and reuse the results later without further computation. Moreover, since
in the implementation of conditional probability, probabilities of two queries must be
computed [1], it benefits even more from the tabling mechanism. The good effects of
this choice are clear and discussed below.

4.1 Analysis of implementation

Based on the formalisms in section 2 we have successfully implemented P-log in XSB
using XASP. In addition, we have compared some computation results of our system to
the P-log(ASP) current version [12].

4.2 Evaluation

In this section we describe some benchmark problems used to compare the performance
of our implementation in XASP with the one of P-log(ASP). We use the same examples
described above, just with greater size. For clarity, we denote by Dice〈D,X〉 the Dice
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example with D dice and each dice having X scores;Cards〈D,X〉 – Card example with
D drawn cards and X cards on the deck; Block〈D,X〉 – Random block example with
D blocks and X locations. Since the probability of a formula w.r.t. a program depends
on stable models in which it is true and those models can be obtained by combining
the ones of its atomic elements, we can use just the set of atomic formulas, for example
roll(d1, i) and roll(d2, i) (i = 1, . . . , 20) in Dice〈2, 20〉, for testing the performance
of the systems, reflecting the performance of any formulas.

Table 1 shows the number of stable models, time for the first run, average time
from second to tenth runs as well as average time of ten runs of atomic queries (queries
for atomic formulas) w.r.t. P-log(XSB) and P-log(ASP) on a computer running Linux
Ubuntu 8.10, 1.8 Ghz core 2 dual, and 2 GByte of RAM. The P-log(XSB) system was
run on XSB 3.2. Both systems use Smodels 2.33, Lparse-1.1.1. Notice that since we use
a set of atomic queries for comparison, only relevant part of the examples which does
not contain P-log(ASP) unsupported constructs is necessary for the P-log(ASP) site.

We have run with a number of sets of ten randomly selected atomic queries in both
systems and realized that the relative performance of the systems did not depend on the
selected sets. This is because of the way the probability of formulas is computed: in
any case, the unnormalized probability of every stable model of the program must be
computed, and then reused for each stable model in the list of the ones that satisfy the
formula. Also note that in our system it is possible to run all ten queries at once, making
a conjunctive query with those ten queries in the body, and the performance is identical
to the one obtained by running the queries separately. However, this is not the case with
P-log(ASP) where the queries have to be run separately. We consider only the total time
of computing stable models and deriving the answers. The time of transformation is
considerably small on both systems, thus being ignored.

Table 1: Benchmark

P-Log(XSB) P-Log(ASP)

Examples
Number of

First Run Second Run
Average Average

First Run Second Run
Average Average

Stable Models (10 times) (2nd - 10th) (10 times) (2nd - 10th)
Dice〈2, 20〉 400 0.1160 0.0120 0.0216 0.0111 0.07 0.03 0.0456 0.0411
Dice〈2, 50〉 2,500 3.7880 0.1000 0.4872 0.1204 0.71 0.72 0.7189 0.72
Dice〈2, 100〉 10,000 88.2490 0.6600 9.4181 0.6591 7.41 7.41 Down in 6th run
Cards〈5, 8〉 6,720 1.5520 0.3360 0.3764 0.2458 0.63 0.66 0.6367 0.6378
Cards〈5, 10〉 30,240 8.1320 1.7000 2.1221 1.4543 3.68 3.69 Down in 7th run
Cards〈5, 11〉 55,440 15.9440 3.2970 4.7246 3.4780 7.64 7.52 Down in 4th run
Cards〈5, 12〉 95,040 29.3250 6.0010 8.6161 6.3151 14.49 Down - -
Block〈3, 22〉 9,240 6.3440 0.5000 0.9724 0.3756 1.72 1.7 1.7033 1.7
Block〈3, 30〉 24,360 24.5290 1.6280 3.4518 1.1099 6.39 6.37 Down in 5th run
Block〈3, 35〉 39,270 48.0030 2.9200 6.5396 1.9326 12.37 17.88 Down in 3th run
Block〈3, 40〉 59,280 89.2610 4.9880 12.5167 3.9896 25.92 Down - -

According to the results, for the first run, our system is about 1.5 to 2 times slower
than P-log(ASP), except for Dice〈2, 100〉 where ours is 11 times slower. This is due to
the fact that the cardinality constraints of Smodels language have not been available for
the current version of XASP (namely, xnmr int interface). As discussed in Section 2
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we need additional rules for determining upper and lower bounds of the constraints,
resulting in that the larger cardinality interval is, the worse the performance of our
system is. However, from the second time on, ours is faster, namely, from 3 to 9 times if
the first one not being taken into account and from 2 to 5 times otherwise. Therefore, the
more probabilistic information we need to extract from the knowledge base, the more
useful our system is. Furthermore, P-log(XSB) is more stable (see the cases where P-
log(ASP) crashes (denoted by Down)).

5 Conclusions and Future Work

We have described our approach for re-implementing P-log in XSB using XASP. With
XASP, the relevance of the system is maintained, thus Smodels only needs to work
with the relevant part and derives only necessary information for further processing. In
addition, the tabling mechanism of XSB significantly decreases the computation time
of the system by reusing the computations having been done. By comparing the two
systems using some benchmarks, we have shown that although our system is slower for
the first query, it is much faster for the subsequent queries.

We have extended P-log with new features, first of all, to query the system with more
expressive queries not supported in original version. This feature enables users with a
very powerful way to gain necessary information from the knowledge base. Further-
more, in many practical problems the domain of one attribute needs to be represented
by, e.g. union, intersection, of other domains. Hence, some set operations for domain
definition equipped in our system make the users easier in representing those problems.

In our implementation, we have made some important changes in XASP package,
namely, xnmr int interface, which result in a better performance of the system. We
also plan to improve xnmr int in order to accept the full lparse syntax, particularly the
cardinality constraints. We expect that in this way our system will obtain a comparable
performance for the first run.

In general, the approach to probabilistic reasoning by deriving all possible worlds
has to deal with a very big list of stable models with a number of predicates. In any
cases, we have to compute the unnormalized probability for each stable model of the
list. Since the computation can be done in parallel, the performance of the system would
very much benefit from multicore CPU computers by using multi-threading, which is
very efficient in XSB, from version 3.0 [20]. This approach will be explored in our
next version. We also envisage to explore properties of the transformed programs in
order to control the exponential blow-up of stable models, w.r.t. some specific cases,
e.g. programs resulting from the transformation of poly-tree Bayes Networks.

Last but not least, it is worth mentioning that our system has been successfully
integrated in several XSB Prolog systems such as ACORDA [17], Evolution Prospec-
tion Agents system [18], for modelling uncertainty in decision making. Those systems
employ several kinds of preferences which require probabilistic information. We may
prefer one abducible to the other if the first one has greater probability, or one outcome
to the other if the probability of the first one to occur is greater than the other one.
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