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Abstract. We present three heuristics including the usage of domain
specific knowledge to improve a general purpose algorithm for the 3D
approximate point set match problem and its application to the task of
finding 3D motifs (like surface patterns or binding sites) in proteins. The
domain specific knowledge and further heuristics are used, under certain
conditions, to reduce the run time for the search and to adapt the number
of reported matches to the expectations of the user. Compared to the
general purpose algorithm, the new version is twice as fast, and can be
further improved especially for small tolerances in the matches by means
of analyzing the distance distributions of the atoms.

1 Introduction

In recent years proteins are compared and analyzed in all of their representa-
tions: as primary structures, i.e., their bare sequences of amino acids, as sec-
ondary structures, i.e., their principal folds mostly in α–helices and β–sheets,
and as ternary structures, i.e., their complete three–dimensional appearances.
The definition of similarity in the molecular context always depends on the sci-
entific question under investigation, especially when one takes into account that
proteins are not really rigid structures, rather they exhibit certain amount of flex-
ibility due to temperature, solvents, and other factors. In many research areas,
such as docking and functional analysis, it becomes more and more important
to compare the 3D structure of the molecules [14].

There is quite a range of algorithms and programs available to the scien-
tific community, both commercial and free, that cover different aspects of pro-
tein comparison, analysis, and fold prediction, see [6, 10, 12] for comprehensive
overviews of different approaches. They include backbone alignment (based on
the Cα–chains), secondary structure elements alignment, and sequence–based
alignments, which either perform pairwise alignment or multiple structure align-
ment. Many of them are hosted at publicly accessible web–servers such as [1, 7,
11] and many more.
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In this article, we describe an extension of the program psm [4]—a program
being already included in a public web–based search facility [1] and especially
useful to identify small components in large arrangements, for instance, similar
surface or binding site structures, loops and hinges etc. within large proteins—
with some new features that, under certain conditions, improve its performance
and allow for a more adaptive search. The core algorithm of psm searches for all
occurrences of a small 3D point set, e.g., atoms, in a large 3D point set, e.g., the
macro–molecule. Other algorithms dedicated to a similar task include PINTS
[13] and needle–haystack [8].

The rest of the article is organized as follows. Section 2 briefly describes the
general purpose approximate point set search algorithm. Section 3 introduces the
proposed heuristics to improve the run times of the algorithm. Section 4 gathers
some preliminary results that we obtained with comparable implementations of
all proposed methods. Section 5 states some future actions that can be carried
out and, finally, Section 6 summarizes the main contributions of the work.

2 Approximate point set match

Let us, for a moment, forget the specific task that we are searching for 3D motifs
in proteins. Rather, we concentrate on the more abstract problem of searching
for a small 3D point set within a large 3D point set. Hence, given a small (both
in diameter and number of points) set of points as search pattern and a large
set of points as search space, find all locations within the search space where
the search pattern can be placed best according to a given distance metric and
applying a given kind of geometric transformation.

More formally: Let P = {p1, . . . , pk} ∈ IR3, |P | = k > 1 be a finite set of
3D points, the search pattern. Let S = {s1, . . . , sn} ∈ IR3, |S| = n > k be a
finite set of 3D points, the search space. Find an injective matching function
µ : P −→ S and a transformation τ : IR3 −→ IR3 such that D(τ(P ), µ(P )) is
minimum, where D is an appropriate distance measure between the point sets.

Usually, τ is taken as a rigid body transformation, i.e., a combination of a
translation and a rotation. Further possibilities include reflection and scaling.
Transformations with deformations (e.g., allowing for torsion or hinges) might
be considered, too. Common distance metrics include, for instance, root mean
square, maximum or average distance:

D(τ(P ), µ(P )) =

√√√√1
k

k∑
i=1

|τ(pi)− µ(pi)|2

D(τ(P ), µ(P )) =
1
k

k∑
i=1

|τ(pi)− µ(pi)|

D(τ(P ), µ(P )) =
k

max
i=1
|τ(pi)− µ(pi)|
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Our algorithm for approximate point set match implemented in psm works
as follows ([1, 4]): First, we build an undirected distance graph GP over P , where
the nodes of the graph are the points of P and the edges define a connected graph
(for simplicity you might assume that GP is the complete graph). Second, we
build an undirected distance graph GS over S considering only those edges, i.e.,
distances in S, being similar (see Section 3 below) to the edges in GP . If the
diameter of P is small compared to the diameter of S a regular grid over the
search space is used to reduce the number of candidate edges in GS .

Once the graphs are built, we apply a backtracking algorithm to find all
subgraphs of GS that match GP both in graph structure and in edge distances.
Let us explain the algorithm in some detail. Assume that the nodes in GP are
ordered in such a way that for all pj , with 1 < j ≤ k, there exists an edge {pi, pj}
with i < j. Let GiP denote the subgraph induced by the nodes {p1, . . . , pi} of
GP ; observe that GkP = GP . All these k graphs are connected graphs and for
each connected graph GP such a sequence of graphs can be found (if GP is the
complete graph, any sequence of nodes defines such a sequence of connected
graphs).

The backtracking algorithms starts with G1
P and tries to find iteratively

matches for GiP in GS with 1 ≤ i ≤ k. Clearly, all nodes in GS are candidate
nodes to be matched to p1. Now, assume we have already matched a subgraph
GiP with i < k and let sj = µ(pj), for 1 ≤ j ≤ i, denote the nodes of GS where
pj has been matched. We try to match the next node pi+1 in the sequence.
All adjacent nodes of si that have not been matched so far and that exhibit
similar distances to all corresponding nodes with smaller indices are candidates
to be matched to pi+1. If such a node of GS cannot be found, i.e., Gi+1

P cannot
be matched, GiP cannot be extended and hence backtracking takes place: we
proceed with the next candidate for pi. The backtracking algorithm eventually
finds all possible matches of GP in GS .

For each match we compute the optimal transformation with the help of a
direct method for RMS distance metric based on [9] or, for the other distance
metrics, with the derivative free optimization algorithm taken from [5].

Let us analyze briefly the run time behavior of the backtracking algorithm.
The subgraph matching problem itself is NP–complete. Assuming that the av-
erage degree of GS is d, the worst case run time is O(n(d log d)k−1(k − 1)!),
because in each extending iteration at most d neighbors have to be visited and
i− 1 distance checks must be performed. The factor log d is due to the fact that
we have to search for the corresponding edges in GS . Storing the graph with
an adjacency matrix (that would allow for constant time access) rather than
using an adjacency list would make the memory requirements for practical cases
prohibitive large. Note that GP , for being assumed to be small, can be stored
as adjacency matrix with constant access time for edge queries.

In practical cases, especially when applying the basic point set match algo-
rithm to proteins, a much lower run time can be observed than stated in the
worst case analysis. As described in the next section different heuristics can be
used
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– to reduce the remaining edges in GS , hence the average degree d is reduced,
– to reorder the nodes in GP , hence more confining edges are tested early, and
– to exploit problem specific restrictions, hence the number of candidate nodes

and/or edges is reduced.

3 Search heuristics

Before going into details, let us first take a look at the similarity relation between
two distances. We say a distance e is similar to a distance d whenever e ∈
[d(1−ε), d(1+ε/(1−ε)] with 0 ≤ ε < 1. The upper bound can often be decreased
to d(1 + ε) in the case the symmetry of the search is not an issue.

The tolerance ε, with 0 ≤ ε < 1, is a user provided value that determines
to what extend the point set found in S can deviate from the pattern P . With
ε = 0 perfect matches are searched for. In [1, 4] ε was a fixed value for all edges.
In the new implementation, we allow for a more flexible approach taking into
account properties of a protein.

We present three heuristics to reduce the search time:

– One that works with the complete graph over the search pattern and reduces
the number of remaining edges in GS taking into account the distribution of
distances being present both in P and S.

– One that uses different values for ε in the similarity relation depending
whether the atoms defining the edge are located close or far on the pro-
tein chain.

– One that takes into account that certain chemical bonds within the protein
are unlikely to be very flexible.

3.1 Rare distances first

Let the graph over the search pattern be complete. Once all distance intervals
over the graph of the search pattern GP are computed, we compute the distribu-
tion of those edges in GS that fall into the intervals. The interval where the least
number of edges of GS are counted defines the, let’s say, rarest distance. Clearly,
we need to maintain in GS only those edges that correspond to the rarest dis-
tance and all adjacent edges to their end nodes with the further restriction that
the other end must have an edge with appropriate distance to the other end of
the rare edge.

We compute the final graph GS in four steps. First, we determine the dis-
tribution to find the rarest distance. Second, we mark all nodes in GS that are
adjacent to an edge similar to the rarest distance. Third, we mark all nodes in
GS that are simultaneously adjacent to the two end nodes of a rare edge. Note
that the marks in the steps two and three are different. Fourth, we generate as
graph GS the graph induced by the edges between marked nodes.

With this possibly smaller graph, the substructure search with the backtrack-
ing algorithm is performed.
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3.2 Flexible distance intervals

Proteins consist of one or various folded chains built as a sequence of amino
acids. Usually, the farer two atoms are located on the chain, the larger the
tolerance for their distance can be, because proteins are, to a certain degree,
flexible structures. To take advantage of this fact in our algorithm, we use this
knowledge to define different tolerances for different edges in the graphs.

We present a still very simple method to define such a flexible tolerance. Let
∆ be the distance in amino acid count of two atoms in the search space, i.e.,
their sequence distance, often notated as |i − j| for atoms i and j of the data
set. Let M be the total number of amino acids in the search space. We define

f =
εf ·∆
M − 1

+ 1

as factor to enlarge the tolerated distance for a match of an edge, i.e., we use
instead of ε the value fε in the similarity relation. The quantity εf ≥ 0 denotes
a user specified value where care must be taken of that fε does not exceed 1. To
allow for a more user friendly way to introduce the additional tolerance εf with
its influence on ε, we ask the user for a value k ≥ 1 and compute

εf =
(

1− 1
k

)
·
(

1
ε
− 1
)

or set εf = 0 for ε = 0. Hence, a value of k = 1 means no flexible tolerance, and
the larger the value of k the larger the flexible tolerance will be. In other words,
for εf = 0 the search algorithm uses for all edges the same tolerance ε as stated
above; the same is true for εf = 1 and atoms belonging to the same amino acid;
for other values of εf and/or atoms not belonging to the same amino acid, ε is
enlarged with the factor f .

3.3 Exploitation of domain specific knowledge

According to [2] we take into account the mean distance for certain chemical
bonds within the backbone of a protein. In more detail, the C–N distance in
a peptide bond is typically 1.32 Å, the C–O distance in a carbon–oxygen bond
is typically 1.24 Å, the Cα–C distance in a carboxyl group is typically 1.52
Å, and the Cα–N distance is typically 1.45 Å. Analyzing several proteins from
the PDB suite (RCSB Protein Data Bank) [3], we confirmed the given mean
values, and observed further a 2.232%, 2.3%, 2.332%, and 3.255% maximum
increase/decrease in distance for these four chemical bonds.

We use a simple table look–up method to identify the corresponding value
for the tolerance ε depending on the types of the atoms and their distance in
amino acid count. The Cα–N bond is only present when both atoms belong to
the same amino acid, the same is true for both the C–O and the Cα–C bonds.
The C–N bond is present when the amino acid distance of the two participating
atoms is one. To build the look–up table we assign to each atom an index ia
according to Table 1.
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atom any Cα N C O

ia 0 2 4 8 14

Table 1. Atom indices according to their type.

If the amino acid distance ∆ between the two atoms A0 and A1 defining an
edge in the distance graph is 0 or 1, we compute a table index i = ∆+ ia(A0) +
ia(A1) which is used to address a table with 30 entries (see Table 2).

i 0–5 6 7–9 10 11–12 13 14–21 22 23–29

ε 0 0.03255 0 0.0232 0 0.2232 0 0.023 0

Table 2. Tabularized values for ε for pairs of atoms.

If the encountered entry in the table is 0, then we use the ε value given by
the user (possibly taking into account the factor f as described in the previous
section), if it is not 0, the table entry without modification is used as ε value for
the specific edge.

4 Results

We present some preliminary results illustrating the improvements comparing
the new version with the different improvements to the original psm software.
The run times have been obtained in [seconds] on a GNU/Linux system with a
Q9550 Intel processor at 2.83 GHz. psm is still implemented as a single threaded
application.

As search space we used the protein 1IRU (hydrolase, mammalian protea-
some) [15] with 47 589 atoms and an active site of the proteasome (see Figure 1).
The active site contains 40 atoms distributed over at least four non–consecutive
amino acids. The active site is a cutout of the proteasome which appears with
certain modifications several times in the protein (see Figure 2). Whenever two
matches in the search space share an atom, we consider the two matches belong-
ing to the same cluster. psm reports to the user both the number of matches and
the number of clusters encountered. A cluster shows where the motif is located
in the protein, whereas the match itself shows in what constellation (and quality
according to some pairwise distance function) the motif is present.

Figure 3 shows the preprocessing times (left plot) and the search times (right
plot) for the psm version without any improvement (upper curves) and the
same for the version where the domain specific knowledge has been taken into
account, i.e., the distances between certain pairs of atoms as stated in Section
3.3 vary at most up to the tabularized percentages. The plots are drawn over the
distance tolerance ε from 0 to 35%, i.e., the mismatch of the inter–atom distances
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Fig. 1. Search space (proteasome) and search pattern for the test cases.

Fig. 2. Clusters found with psm.

comparing the search pattern to the encountered location in the search can be
that large. As one can observe the preprocessing time is almost the same for
both cases, however, the search time of the new version is half of the time of the
old version.

If we look at the number of matches found by the two versions (see Figure 4),
we see that including domain specific knowledge reduces the number of reported
matches (note the logarithmic scale in the plot). However, it is important to
mention that, at least in our current tests, the number of clusters and their
location is for all values of ε exactly the same. We have observed the same
behavior for all other tests described in the on–going.

Figure 5 shows the preprocessing times (left plot) and the search times (right
plot) for versions of psm taking into account the distance distributions, i.e.,
searching for the rarest distance first. The upper curve does not use domain
specific knowledge. The plots are drawn over the distance tolerance ε from 0 to
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Fig. 3. Preprocessing times (left plot) and the search times (right plot) for the psm
version without any improvement (upper curves) and the same for the version where
the domain specific knowledge has been taken into account.

Fig. 4. Number of matches for the two versions without (upper curve) and with (lower
curve) domain specific knowledge (note the logarithmic scale).

20%, i.e., the mismatch of the inter–atom distances comparing the search pattern
to the encountered location in the search can be that large. As one can observe
the preprocessing time is almost the same for both cases, but has increased
about 20% compared to the versions without consideration of the distribution.
The search time with use of domain specific knowledge again is, at least for larger
values of ε, almost halved. Moreover, if one compares the search times shown
in Figures 3 and 5, searching for the rarest distance first, reduces the search
time slightly, especially for small tolerances. Hence, although the preprocessing
time has been increased due to the processing of the distribution and the more
complex graph construction, the faster search time may lead even to an overall
faster algorithm, when partial matches (leaving several atoms out) have to be
encountered.

Figure 6 shows the effect of introducing flexible distances according to the
amino acid distance of the atoms (as introduced in Section 3.2). The preprocess-
ing times (left plot) are almost the same as in the case of no flexible distance
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Fig. 5. Preprocessing times (left plot) and the search times (right plot) for versions
of psm taking into account the distance distributions. The upper curve does not use
domain specific knowledge, whereas the lower uses that knowledge.

(compare to left plot in Figure 3). The run times have increased considerably
as expected, because we set k = 1000, a rather large value, i.e., the distance
tolerances for widely separated atoms according to their amino acid distance
became quite large. The important fact to notice is that the introduction of
domain specific knowledge (lower curves) allows for much faster run times for
larger tolerance ε.

Fig. 6. Preprocessing times (left plot) and the search times (right plot) for versions
of psm taking into account flexible distances. The upper curve does not use domain
specific knowledge, whereas the lower uses that knowledge.

Figure 7 shows what happens if both flexible distances and analysis of the
distance distribution is taken into account. Again preprocessing times (left plot)
with and without domain specific knowledge is almost equal and more or less
the same when not dealing with flexible distances (compare to left plot in Figure
5). The search times (right plot) show the same behavior as seen in Figure 6,
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i.e., with flexible distances it is not worthwhile to search with the rarest distance
first, at least, for large values of the tolerance ε.

Fig. 7. Preprocessing times (left plot) and the search times (right plot) for versions of
psm taking into account both flexible distances and analysis of the distance distribu-
tion. The upper curve does not use domain specific knowledge, whereas the lower uses
that knowledge.

Preprocessing takes somewhat longer but searching is much faster. So it pays
off, for instance, when searching for more than one pattern at a time, or when
searching for partial matches leaving out one or several atoms.

5 Further work

The ideas and preliminary tests as presented in this article can be extended
taking into account the following:

– Up to now we use only domain specific knowledge of the backbone of the
protein. Possibly it would be useful to take into account further structures,
such as rings, in residues which exhibit less flexible distances as well.

– We might improve the simple amino acid distance dependent tolerance to a
more sophisticated one, especially considering the possible rotation of a triple
of amino acids. Moreover, the dependence of the overall amino acid count of
the protein should be eliminated, i.e., the value of M should be established
to a fixed value gathering statistics calculated from PDB structures.

– During the backtracking we might consider the rotational restrictions for
certain atom arrangements to early discard candidates.

– The user might introduce individual distance tolerances for certain or all
distances within the search pattern.

– Clearly, more rigorous statistical evaluation of the proposed methods on a
sufficiently large and diverse set of search spaces and motifs must be elabo-
rated.
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– Other type of domain specific knowledge might be introduced, for instance,
removal of interior atoms whenever a surface pattern is searched for, match-
ing of only chemically similar atoms, or incorporating the residue type re-
strictions taking into account properties like electrical charge or hydropho-
bicity.

– The search algorithm should be parallelized to run at least with a small
number of threads taking advantage of modern processor architectures.

6 Conclusion

We presented three approaches and certain details of their implementation to-
gether with some preliminary results on how to improve the performance of a
general purpose approximate point set match algorithm in the field of structural
protein analysis. Introducing domain specific knowledge, such as less flexible
chemical bonds, reduces the run time of a search to the half without increase in
the preprocessing time. The modified algorithm finds the same locations in terms
of clusters as the general algorithm. The run time of a search can be further re-
duced slightly taking into account the distance distribution in the search graphs.
However, the preprocessing time is increased by roughly 20%. Hence, analyzing
the distributions pays off whenever the preprocessing time can be amortized, e.g.,
if partial matches must be found. With the help of flexible distances according
to the amino acid distance of the atoms, large tolerances can be employed with
moderate increase of the overall search time.
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