
Predicting the Outcome of Mutation in Genetic
Algorithms

Sandeep Rajoria1, Carlos Soares2, Jorge Pinho de Sousa3, and Joydip Dhar4

1 ABV-Indian Institute of Information Technology and Management, Gwalior, India
2 LIAAD-INESC Porto LA/Faculdade de Economia, Universidade do Porto, Porto,

Portugal
3 INESC Porto LA/Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
4 Faculty of Applied Sciences, ABV-Indian Institute of Information Technology and

Management, Gwalior, India
sandeep.rajoria@iiitm.ac.in, csoares@fep.up.pt, jsousa@inescporto.pt,

jdhar@iiitm.ac.in

Abstract. The general goal of our work is to develop smart operators
that incorporate Machine Learning methods to improve the search of
GAs (or EC, in general). As a first step in that direction, this paper
investigates if is it possible to learn to predict the behavior of the swap
mutation operator on Job-Shop Scheduling problems. For that purpose,
we generate all possible operations and assess their effect on the quality
of the solutions. We apply a learning algorithm to obtain a mapping
between a description of the operations and that effect. We obtain good
results even using relatively small training sets.

1 Introduction

Genetic Algorithms (GA) or, more generally, Evolutionary Computation (EC)
methods, are widely used in Optimization [2]. Within the EC framework, the user
may tackle an optimization problem using off-the-shelf methods, such as a binary
GA. In this case, the user must design methods to translate problem solutions
into binary strings (encode) and to translate these back into solutions (decode).
Any implementation of a binary GA can then be used to carry out the optimiza-
tion process. On the other hand, EC also enables a radically different approach,
by tailoring part or the whole optimization process to the problem. In this case,
the user may work with any kind of representation of the solutions (ranging from
simple numerical vectors to very complex structures, such as graphs and trees)
but appropriate operators must then be developed (or adapted) to carry out the
search.

The flexibility of the EC framework encourages the development of new op-
erators. These can be general operators, that depend only on the representation,
or more specific ones, that are only suitable for a small set of problem types.
This flexibility creates an appealing opportunity to employ Machine Learning
methods [5].



88 S. Rajoria et al.

The general goal behind this research is to develop smart operators that
incorporate Machine Learning methods to improve the search of GAs (or EC, in
general) so as to make it more efficient and faster. These operators should be able
to decide how to behave based on previous experience. But before developing
such an operator it is necessary to investigate the following question: is it possible
to learn to predict the behavior of GA operators?.

In this paper, we perform one such study. Our goal is to test whether it is
possible to predict the outcome of the swap mutation operator of a GA applied
to the problem of Job-Shop Scheduling. We systematically generate mutation
operations and evaluate their effect on the quality of the solutions. Then, we
characterize operations using a set of measures and, finally, we use learning
methods to obtain a mapping between the characteristics of operations and their
effect.

We start by describing the Job-Shop Scheduling problem and the mutation
operation which is investigated in this work (Section 2). Next, we describe our
approach in detail, focusing on the process of generating the data to be used for
learning (Section 3). In Section 4, we present some experimental results. Finally,
we present some conclusions and future work, namely how a smart operator can
be built based on the learning approach described in this paper (Section 5).

2 Job-Shop Scheduling Problem and Swap Mutation

We start by informally describing the Job-Shop Scheduling problem. More de-
tailed descriptions can be easily found in the literature (e.g., [6]). Then, we
describe the swap mutation operator, which is the object of this analysis.

2.1 Job Shop Scheduling problems

In summary, the Job Shop Scheduling (JSS) problem can be defined as follows:

– A finite set of n jobs
– Each job consists of a chain of operations
– A finite set of m machines
– Each machine can handle at most one operation at a time
– Each operation needs to be processed during an uninterrupted period of a

given length on each machine

The goal is to find a schedule, that is, an allocation of the operations to time
intervals on machines, that optimizes some criterion. In our experiments, the
evaluation criterion is the makespan, i.e., the end time of the job finishing the
latest.

Thus from the above definition we can figure that the most basic and simple
JSS problem consists of:

Precedence matrix This basically consists of the precedence constraints, rep-
resenting the order of the machines in which the jobs have to be processed.



Predicting the Outcome of Mutation in Genetic Algorithms 89

Duration matrix The time required for the jobs to be processed in the ma-
chines.

Table 1 contains an example of a 3x3 JSS problem, i.e., 3 machines and 3
jobs.

Table 1. An example of a 3x3 problem

Duration Precedence
Machine1 Machine2 Machine3 Machine1 Machine2 Machine3

Job1 10 24 11 3 2 1
Job2 64 31 95 2 3 1
Job3 9 12 30 1 3 2

2.2 Representation

A chromosome is an unpartitioned permutation with m repetitions of the n jobs
[1]. An example of a solution for a 3x3 (3 Machines and 3 Jobs) JSS problem is

1,3,3,2,1,2,3,1,2

which actually will mean that:

– the first operation to be scheduled is the first of job 1 (which, according the
precedence matrix, turns out to be on machine 3);

– the second operation to be scheduled is the first of job 3;
– the third operation to be scheduled is the second operation of job 3, as 3

appears for the second time;
– and so on...

A schedule is generated by decoding a solution. We use a simple algorithm
which allocates time slots on the machines to operations, strictly following the
order in the chromosome. The steps used in the whole process of decoding can
be summarised as follows. For i ∈ 1 . . . n×m:

1. j ← ith element of the chomosome. The value of j represents the job to
which the operation that we are scheduling belongs.

2. o ← number of operations of j that have been already scheduled, i.e., the
number of times j is in the chromosome before the ith.

3. p ← machine in which the oth operation of job j should be executed (from
the precedence matrix).

4. d ← execution time required by the operation of j to be executed oon ma-
chine p (from the duration matrix).

5. s← max(end time of the latest operation of job j that was already scheduled,
end time of the latest scheduled operation on machine p).

6. Schedule the operation of job j on machine p from time s to s+ d.



90 S. Rajoria et al.

This algorithm generates valid schedules, i.e., schedules which do not violate any
of the constraints. However, it may generate schedules which unnecessarily delay
operations. For instance, let us consider two operations on the same machine,
where operation i follows operation j in the chromosome. Using this algorithm,
i will be scheduled after j, even if it the corresponding machine has a free slot
before operation j which is long enough to schedule i (and assuming that the
remaining constraints are not violated). Other algorithms exist that do not have
this shortcoming (e.g., generate active schedules [3]). However, the choice of
decoding algorithm is not essential for the purpose of this work.

2.3 Swap Mutation

Our work is focused on the swap mutation operator, which is commonly used
in permutation-based representations [2]. It simply consists of generating a new
chromosome by randomly swapping two elements from an existing one. An ex-
ample of the swap mutation operator is given in Table 2.

Table 2. An example of the swap mutation. The selected positions are 2 and 4

Chromosome 1,3,3,2,1,2,2,1,3
Mutated chromosome 1,2,3,3,1,2,2,1,3

3 Prediction of the Outcome of Swap Mutation

As stated earlier, the goal of this work is to test the hypothesis of whether it
is possible to learn models that are able to predict the behavior of GA opera-
tors and, in particular, of swap mutation. Two important characteristics of this
problem are:

– the function we are trying to learn is deterministic, unlike most learning
problems. The outcome of an operation is always the same.

– the universe of examples is finite and can be systematically generated. The
universe of solutions of a n × m problem is the set of all unpartitioned
permutations of n elements with m repetitions. The universe of all operations
is obtained by testing all possible pairwise swaps of elements for each solution
in the universe.

The size of the universe of operations is, naturally, very large, except for
very small n and m. But, in the latter case, it is possible to generate all the
possible operations, and, thus, investigate our hypothesis thoroughly, as will be
described.

The methodology proposed is the following:

1. Generate all possible operations and estimate their effect on the quality of
the corresponding solutions, which is the target variable (Section 3.1).



Predicting the Outcome of Mutation in Genetic Algorithms 91

2. Generate a description of each of the operations (i.e., a set of features) (Sec-
tion 3.2).

3. Use learning methods to find a mapping between these features and the
target value.

Here the target variable we are dealing with is the effect of the mutation
operator on the makespan of the solution. So the function that we are look-
ing for maps the inputs, i.e., the features of the operation (xi) to the output,
i.e., the variation in the makespan of the chromosome (∆makespan). It can be
represented as:

∆makespan = f (x1, . . . , xk) (1)

where k is the number of attributes. The target variable is numeric, which means
that this is a regression problem.

For the development of smart operators, it may be sufficient to know simply
if the operation is going to improve the quality of the solution or not. In this
case, the problem can be addressed as a classification problem. The class of each
operation can be determined simply by determining the sign of the variation in
makespan:

class = sign (∆makespan) (2)

Only if it is possible to generate such a mapping successfully, can we move
on to build a smart swap mutation, which can guide its operation based on a
model of its past performance.

Experimental results of this approach are presented in Section 4. Before that,
we describe in mode detail the process of generating the target values.

3.1 Target Values

Examples are generated as follows:

1. Take one of the instances and generate all the possible chromosomes, i.e.,
all unpartitioned permutations of n elements with m repetitions. In a 3x3
problem, this amounts to a total of (3∗3)!

3!∗3!∗3! = 1680 chromosomes. Then, we
compute the fitness of each of the chromosomes.

2. For each one of the chromosomes, find out all the operations that is possible
to carry out with the swap mutation. For a 3x3 problem, there are 18 + 9 +
0 = 27 possible swap mutations for each solution that exchange alleles with
different values.

3. Determine the target value for each operation. This is computed as the
difference in the fitness of the chromosome that is generated by the operation
and the fitness of the original chromosome. In a 3x3 problem, we have a
total of 1680∗27 = 45360 operations and, thus, of fitness variations. Table 3
illustrates the generation of the target value.



92 S. Rajoria et al.

Table 3. An example of the process of generating the target value

Chromosome Fitness

Original 1,2,2,3,2,3,1,1,3 208
Mutated 2,2,2,3,1,3,1,1,3 129

Variation -79

3.2 Features

To be able to predict the effect of an operation on the quality of the corresponding
solution, we need to describe those operations using predictive features. This
means that the features must contain information that is useful to determine
that effect which we are trying to predict. Additionally, the features can only
use information that is available before the operation is executed. Otherwise,
there is no need to predict its outcome. The information that is available to be
used in the development of the features is the following:

Problem :
– Precedence of the machine in the jobs (i.e., the precedence matrix)
– Execution time of the jobs on the machine (i.e., the duration matrix)

Individual :
– Order of the jobs for scheduling (i.e., the chromosome)
– Fitness of the individual

Operation : In the case of swap mutation, the information is can be used is
– Position of the swaps

Many features can be generated based one of these types of information or
combinations. In this study we have generated the following set of features:

– J1 & J2 - Jobs to which the operations being swapped belong.
– D1 & D2 - Execution time of all the operations in the job before the current

one, for J1 and J2.
– O1 & O1 - Order of the operation in the job, for J1 and J2.
– M1 & M2 - Machines in which the operation should be executed, for J1 and

J2.
– MOJ & MAOJ - The job which is numerically smaller and bigger, respec-

tively.
– NTJAB1 & NTJAB2 - Number of jobs that have occurred before the job,

for J1 and J2.
– TMJ1 & TMJ2 - Total execution time of all jobs on the machine used by

the operation, for J1 and J2.
– DBP - Difference in the position of the operations on their respective ma-

chines.
– TTBMTMJ1 & TTBMTMJ2 - Ratio of the total execution time of all jobs

on the machine used by the operation (TMJ1 or TMJ2) and the maximum
total execution time of all the machines, for J1 and J2.

– SM - Whether the operations share the same machine before and after swap.



Predicting the Outcome of Mutation in Genetic Algorithms 93

– NM1 & NM2 - New machines in which the operation should be executed
after the swap, for J1 and J2.

– SNM - Whether the new machines are same.
– TTOMBTTNMJ1 & TTOMBTTNMJ2 - Ratio of the total execution times

of all jobs on the old (before the swap, TMJ1 or TMJ2) and new (after the
swap) machine used by the operation, for J1 and J2.

– RJMPJ1 & RJMPJ2 - Ratio of the number of jobs on the machine used by
the operation, before and after it, for J1 and J2.

– NSOB1 & NSOB2 - Number of operations on the same machine of the op-
eration in between the swap positions, for J1 and J2.

– DPM - Difference between the positions of the jobs J1 and J2 on the machines
of the corresponding positions.

– TPJMJ1 & TPJMJ2 - Total execution time of the jobs executed on the same
machine used by the job, that are scheduled before it, for J1 and J2.

– MC - The mean correlation between the execution time of the jobs on the
machines, for all the jobs.

4 Experimental Results

Given that we generate all possible operations, we need to work with small
problems. We have generated ten problems with three jobs and three machines
(3x3). We implemented a problem generation method which is commonly used
in Operations Research [6].

The smart operators we plan to develop will generate models based on oper-
ations that were previously executed. The number of operations that is available
for this purpose is necessarily small when compared to the universe of all possible
operations. Although our goal at this stage of the work is simply to investigate
whether it is possible to predict the effect of an operation, we should use a rela-
tively small number of examples to be able to obtain more reliable conclusions.

Additionally, we wish to assess how small a dataset we can use and still
obtain satisfactory models. Therefore, we did experiments using 20%, 10%, 9%,
8%, 7%, 6%, 5%, 4% and 3% percent of the data for training and the remaining
data to estimate the generalization error (i.e., as test set).

The algorithms that we used for the purpose of model generation are given
in Table 4. More information about these algorithms can be found in textbooks
on Machine Learning and Statistics (e.g., [5, 4]).

Table 4. Learning algorithms

Regression Classification

LR Linear Regression LD Linear Discriminant
RT Regression Tree DT Decision Tree
SVM-R Support Vector Machines SVM-C Support Vector Machines
RF-R Random Forest RF-C Random Forest



94 S. Rajoria et al.

The results are presented in Table 5 and Figure 1. Several interesting observa-
tions can be made. Firstly, these results indicate that the hypothesis underlying
this study is true: it is possible to predict the effect of swap mutation. The best
result in the regression problem is an NMSE of 0.16 and in the classification
problem is an error rate 5%.

Table 5. Results of predicting the effect of swap mutation, varying the amount of train-
ing data. The evaluation measure for classification is the error rate and for regression
is NMSE

Regression Classification

% LR RT SVM-R RF-R LD DT SVM-C RF-C

20 0.59 0.55 0.29 0.16 0.18 0.16 0.10 0.05
10 0.59 0.56 0.33 0.23 0.19 0.16 0.12 0.07
9 0.59 0.55 0.35 0.24 0.19 0.16 0.12 0.08
8 0.59 0.57 0.35 0.26 0.19 0.16 0.12 0.08
7 0.59 0.55 0.36 0.27 0.19 0.16 0.13 0.09
6 0.59 0.56 0.38 0.29 0.19 0.17 0.13 0.09
5 0.59 0.56 0.39 0.31 0.19 0.16 0.13 0.10
4 0.60 0.57 0.41 0.33 0.19 0.16 0.14 0.10
3 0.60 0.57 0.44 0.36 0.19 0.17 0.15 0.11

Although the numbers cannot be compared directly, we observe that the
results obtained in the classification problem seem to be much better than the
ones obtained in the regression problem. This means that we are better able to
predict whether an operation is going to improve the quality of the solution or
not, than the value of the variation (i.e., by how much the solution improves or
worsens).

Additionally, the best results are obtained with the Random Forest algo-
rithm. The results clearly show that Support Vector Machines are also doing
pretty well. However, we note that both of these algorithms are computational
more expensive than the other ones. This cost may be relevant in the context of
the optimization algorithm, although we have not investigated this issue yet.

The lines in the plot are almost horizontal, which means that the effect of
reducing the size of the training set is not very big. However, on closer inspection,
we observe that it is stronger on the algorithms that achieve the best results. In
fact, for the Random Forests the error doubles both in the classification and the
regression problems. However, it is still low (10% and 0.36, respectively). One
interesting result is that the performance of the Discriminant Analysis methods
and simple Tree-based models are almost not affected by the training set size.

The variance of the results is also quite low, which indicates that the approach
is robust (Figure 2).



Predicting the Outcome of Mutation in Genetic Algorithms 95

Fig. 1. Results of predicting the effect of swap mutation, varying the amount of training
data

5 Conclusions

In this paper, we present a first set of experiments to test whether it is possible
to predict the effect of the swap mutation operator in optimization with Genetic
Algorithms. The optimization problem addressed is the Job-Shop Scheduling
problem.

Our results show that the problem is learnable, even using relatively small
training sets. This indicates that it is possible to develop a smart swap mutation
operator that decides how to mutate a chromosome based on the effect of previ-
ous operations. This smart operator must start with a model based on a small
set of operations but it could periodically (say, every 100 operations) update the
model. Here we have used larger samples, so it remains to be evaluated the effect
of using such small training sets on the quality of the results.

Such a smart operator can be regarded as a greedy operator. Therefore, we
note that although it is possible to build it, this does not necessarily mean, when
integrated in the search process of a GA, it will contribute to better solutions.
Additionally, it must be taken into account that the smart operator described
will only be useful if it is not computationally very expensive relative to the
optimization process. These issues must be verified empirically. Additionally, it
is possible to develop hybrid operators, which sometimes make decisions based
on the learning model and sometimes will choose randomly.



96 S. Rajoria et al.

Fig. 2. Variance of the results of predicting the effect of swap mutation, varying the
amount of training data

Despite the good results obtained, we believe that it is necessary to make
further tests before using this approach to develop smart operators. One im-
portant issue is the size of the optimization problems. Our experiments so far
were on very small problems. We need to test this approach on larger problems.
Naturally, it will not be possible to generate all solutions, so we will work with
samples.

Finally, the simplicity of the swap mutation makes it a good candidate to
test our hypothesis. It would be interesting to test whether it is possible to
use this approach to other operators, in particular to more complex ones, such
as crossover. The challenge lies in the design of the features used to describe
operations.

References

1. Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation rep-
resentations for scheduling problems. In Hans-Michael Voigt, Werner Ebeling, Ingo
Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature
– PPSN IV, pages 310–318, Berlin, 1996. Springer.

2. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing (Natural Com-
puting Series). Springer, November 2003.

3. B. Giffler and G.L. Thompson. Algorithms for solving production-scheduling prob-
lems. Operations Research, 8(4):487–503, 1960.



Predicting the Outcome of Mutation in Genetic Algorithms 97

4. Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Sta-
tistical Learning. Springer, August 2001.

5. T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.
6. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Oper-

ational Research, 64:278–285, 1993.


