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2 LabMAg – Dep. de Informática, Faculdade de Ciências, Universidade de Lisboa,
Portugal
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Abstract. We address the problem of finding the correct agents to in-
teract with from a general standpoint. We take the payoff obtained by
agents in any game with dilemma as an input to our model. Its output is
a probability distribution used in the partner selection that increasingly
favours cooperative agents. Our approach contrasts with others designed
for specific games without concerns of generality. We show both theo-
retically and experimentally that the major factor affecting cooperators
selecting only themselves is the agents’ strategies. This result does not
depend on game nature or the initial probability distribution.

1 Introduction

Models of reputation or the chance of punishing are typically models analysed in
situations where a dilemma is present. Reputation is used by agents as a measure
of how well one behaves, and thus leads to one agent being favoured in detriment
of others. Punishment is used as a method to discourage the proliferation of non-
cooperators [7]. These models are often used with concrete, but representative,
games [13, 2].

Such models are put forward to explain the prevaillance of cooperation in a
population of interacting agents. Typically such models assume that the agents
are laid in some lattice that restricts with whom an agent may interact [20].
Graphs are often used to describe such restrictions. Such graphs are also called
networks of contacts. There are also models that focus on which type of network
favours the development of cooperation [12].

The model that we present focuses on partner selection by agents. Our agents
are able to select with whom they wish to interact. This approach is often taken
on models of reputation [9, 18, 19, 7], where an agent maintains some vector that
classifies its potential partners. This vector is then used to pick up the most
promising partners.

We will consider that the only information an agent gets from an interaction
is its payoff. It does not know which actions were taken by its partners. This
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feature allows an agent to select its partners, only requiring knowledge about
the payoffs of whichever game is used for interaction.

The motivation of the model presented in this paper is to address the prob-
lem of how cooperative agents are able to survive in a population subject to
interaction constraints. There are several approaches to instill cooperative be-
haviour in a population of interacting agents. This is a topic of much research
in Game Theory (see for instance [6, 8, 5, 21, 1, 4, 8]), Sociology, Biology (see [16,
13, 3]), and Artificial Intelligence (see [9, 19, 22]), to name a few areas.

As we use Game Theory to model the interactions between agents, our model
makes direct use of the payoffs of a game in order to select the cooperative
partners. The model consists in a probability vector maintained by each agent
that in each position represents the probability of selecting an agent as a partner
to play a game.

Since the agent has to find the best partner, the algorithm can be compared to
a Cournot adjustment process [10] were players iteratively adjust their strategies
to their partner responses. In this paper, an agent strategy remains constant but
it adjusts its preferences towards more profitable or cooperative partners. Similar
approaches to partner selection have been tackled in [14] but they focused on
a specific game such as Prisoner’s Dilemma (PD). With the approach we now
propose, we are able to do partner selection in any situation capable of being
described as a game, and we are not limited to any particular game.

2 Definitions

We will use Game Theory as the tool to model interaction between agents. To
this end, we will consider that a population P of agents interacts accordingly to
the rules of some n-player game G. The game describes the strategies available
to players and the payoffs they obtain as a function of the strategies used. The
game has a n-dimensions strategy space S = S1×S2× . . .×Sn where agents can
draw a strategy si ∈ Si to play a game. The vector s = (s1, . . . sn) represents a
strategy profile of the n players involved in the game. The game also has n payoff
functions, ui : S→ R, with i ∈ {1, 2, . . . , n}. The payoff values are bounded and
belong to R. Let u be the lowest payoff and u be the highest payoff in game G.

Agents are composed of a strategy si ∈ Si. This means agents are charac-
terised by the role they play in game G. As an example, a game may model a
buyer/seller scenario. Generally speaking, the game is asymmetric. This means
the following condition is true:

∃i∃j : i 6= j =⇒ Si 6= Sj .

An agent to play a game G must select n− 1 agents of the appropriate role,
i.e. each one with a strategy sj with j 6= i. If the game is symmetric, then all
the strategy sets Si are equal.

We also aim at reaching a position where cooperative agents only interact
between themselves. As cooperative agents we define those that form a strategy
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profile that maximises the average payoff of the players. We define the payoff
obtained by such Pareto Optimal profile as follows:

uP = max
s

∑
i

ui(s)
n

.

As an example, in the Iterated Prisoner’s Dilemma (IPD) game [11], a coopera-
tive agent is one that does not defect, and in a Public Good Game (PGG) [11]
a cooperative agent is one that contributes to the common good.

Table 1 summarises the nomenclature used throughout this document.

α, β, γ agents
P the population of agents
G a n-player game
u highest payoff in game G
u lowest payoff in game G
uP payoff obtained by an agent in a Pareto Optimal profile
wα,β label of the edge from agent α to agent β

Table 1. Nomenclature used in this document

3 Model Description

A population P of agents is represented by a directed simple graph where a
vertex represents an agent α and a labelled edge from α to β represents the
probability of agent α interacting with β.

P = (V,E)

with:

V = {α, β, γ, . . .},
E = {(α, β, wα,β), . . .},

wα,β ≥ 0,∑
β

wα,β = 1.

This definition allows us to represent the directed simple graph by a matrix. If
there is no link from agent α to β, then it is assumed that probability wα,β is
zero.

Each agent performs the following algorithm:

1. partner selection,
2. play the game,
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3. update wα,β probabilities.

In the first iterations of the algorithm, the agent must find the best partners
and increase their probability of being selected, while decreasing the chance of
selecting bad partners. Our model must strike a balance between exploring new
neighbours and exploiting the best agents it has found so far.

The algorithm can be run in a distributed fashion by each agent. No com-
munication between agents is necessary, nor any central control is required. The
wα,β matrix could be split in vectors, each one maintained by the corresponding
agent.

3.1 Update policy

The edge weight update policy for agent α is a function defined as follows:

wt+1
α,β = ζ(wtα,β , u

t
α)

where wtα,β is the edge weight before the game and utα is the payoff agent α
obtains in the game.

The main focus of the work presented in this paper is the analysis of an
update policy that meets the following two conditions:

Cooperative aggregation Cooperative agents are mostly connected to each
other. If α and a neighbour β are part of a Pareto Optimal profile, then in
the limit the sum of the probability of selecting all β should be 1:∑

β

lim
t→∞w

t
α,β = 1 ∀β uα(. . . , sβ , . . .) = uP . (1)

Stability The update policy must be robust in order to resist perturbations in
the population and to be applicable to any n-player game. In the long run
and in the absence of perturbations, weights must stabilise:

lim
t→∞(wt+1

α,β − wtα,β) = 0. (2)

We are assuming that the number of cooperative agents is equal or higher
than the number of players and partner selection is done without replacement.
Otherwise, a cooperative agent does not have enough partners to play a game.

The edge weight update policy is divided in two cases depending on whether
an agent played the game with agent α or not.

Agent β played the game A simple policy is to multiply the old weight by
a factor that is proportional to the distance between the payoff u obtained by
agent α and the Pareto Optimal payoff uP :

wt+1
α,β =


wtα,β

u− u
uP − u u < uP

wtα,β u = uP

wtα,β
u− u
u− uP u > uP .
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This rule by itself does not guarantee the condition stated by equation (1).
Only combined with the rule for the case of agents that were not selected we
achieve it. Regarding the stability, this rule will keep weights unchanged if the
payoff is equal to uP . Otherwise they will tend to zero as in the first and third
cases wtα,β is multiplied by a factor always less than 1. Either way, equation (2)
is met.

This policy from the viewpoint of an uncooperative agent is irrational. Such
agents defect in the PD, do not provide the good in PGG, keep all the money in
the Ultimatum. Their payoff is often greater than uP . They should keep selecting
the partner in order to exploit him. Instead of a single peak, the update policy
should have a cutoff threshold:

wt+1
α,β =

wtα,β
u− u
uP − u u < uP

wtα,β u ≥ uP .
(3)

This rule also verifies the stability condition. Another characteristic is that if
u ≥ uP the agent will not change its probabilities and thus it will probabilistically
play with the same agents. Since it is rational for all agents, we will consider it
for the remainder of the paper.

Agent γ did not play the game The multiplicative factor used for agents
that played the game implies that the weight of all agents that played will either
stay the same or decrease. If they decrease, the difference must be distributed
among the other edge weights. A simple solution is to distribute equally:

wt+1
α,γ = wtα,γ +

s

x
(4)

where s is the sum of the difference of all link values, egressing node α, that
have played the game in the current round,

s =
∑
β

(wt+1
α,β − wtα,β)

and variable x is the number of neighbours of agent α that were not selected.
This equation shows that this policy explores alternative partners if u < uP ,

since the probability of others being selected in the next iteration is increased.
Equation (4) combined with equation(3) is able to achieve the condition

expressed by equation (1). If a cooperative agent selects an uncooperative, the
corresponding weight will decrease towards zero. The difference is distributed
among the weights of players that were not selected. However, the weight of a
second uncooperative partner also increases, but not by much. Even if this second
partner is selected, its weight is reduced and distributed among all the partners.
The point is that, in the long run, weights of uncooperative agents decrease while
weights of cooperative agents will absorb the distributed differences.
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4 Experimental Analysis

The purpose of the experiments reported in this paper is to assess the time co-
operative agents take to only select themselves as partners of interaction. To this
end, simulations with different proportion and quantities of cooperative agents
were performed. Other conditions were also analysed such as initial probability
values, different games and, in one case, different game parameters.

4.1 The Games

The selected games were the Give-Take game and IPD. These games have been
chosen because they pose a dilemma. The first one is a 2-player game with several
Pareto Optimal strategy profiles [15], and the second is commonly used.

The Give-Take game is played between two agents that must share a single
resource. Only one agent can hold it and benefit from it at each iteration. That
agent can give the resource to its partner. The partner can take (grab) the
resource or do nothing. Their roles will remain the same, provided both players
do nothing. Agents change role whenever the resource ownership is changed.
Whenever an agent gives the resource away, it can receive a bonus, bg. An agent
that takes (grabs) the resource (from its partner) pays a penalty as its partner.

Two sets of parameters were used differing on the value of parameter bg:
possession of the resource per iteration was set to 1, giving the resource, bg,
yields 0.5 or 0 units, taking the resource costs 2 units to the performer and 1
unit to the subject of the action. The game had at least 100 iterations, and after
the 100th the probability of occurring one more iteration was set to 0.5. Due to
implementation decisions, game length was limited to 1000 iterations.

The strategy used by the agents is deterministic and has two parameters: tg
number of iterations the agent waits (after obtaining the resource possession)
before giving it to its partner; tt number of iterations the agent waits (after loos-
ing the resource possession) before taking it from its partner. These parameters
allow us to have strategies that never give the resource (tg =∞, tt = x) or that
do nothing (tg =∞, tt =∞).

The payoffs of IPD were: temptation to defect 5; cooperate 3; suckers 0;
penalty 1. Each game lasted at least 10 iterations, and after the 10th the proba-
bility of occurring one more iteration was set to 0.5. The strategy used by agents
is stochastic and has one parameter: the probability to cooperate.

4.2 The Population

Regarding the agents, different strategies where used, which can be roughly
classified in how cooperative they are. The strategies used in the Give-Take
game are:

S1, S2, S3 These strategies always give the resource, but do so at different
times: 1, 10 and 20 iterations. They never take the resource. Therefore,
if both agents use the same strategy, their form a Pareto Optimal profile.
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However, when agents use different strategies, the one that gives the resource
sooner is explored;

S4 An uncooperative and aggressive strategy, as it never gives the resource, and
takes it immediately after it looses its possession.

The strategies used in IPD are:

S1 A cooperative strategy that always cooperates;
S2, S3 Two strategies that cooperate with probabilities 0.7 and 0.3;
S4 One is uncooperative as it always defects.

The number of strategies in the population, for each type, varied between
2, 4, 8, 16 or 32 agents. This allows us to study the time taken for different
proportions and quantities of cooperative strategies to mostly select themselves
as partners. For instance 32 S1 versus 2 of each S2, S3 and S4 is a scenario
that favours cooperative agents. A scenario with 8 of each S1, S2, S3 and S4 is
balanced for all strategies. On the contrary, a scenario with 2 S1 versus 32 of S4
and any number of S2 and S3 is very unfavourable for the cooperative agents
as they will take longer in finding the correct partners.

Total population varied among {8, 10, . . . , 112, 128}. This allows us to study
how cooperative agents select themselves as interaction partners in different
scenarios. We opted for a majority of cases with a small number of agents because
we are interested in analysing the edge weights and viewing the resulting graph.
For bigger populations we have 1282 edges to examine, therefore, in this case,
we only analyse global results. As for the initial edge weights, two options were
used: identical values so that every agent has the same chance of being selected;
random values.

4.3 Other Parameters

Each simulation consisted of 1000 rounds of games. In each round all agents
played at least one game, since the following steps were performed per round for
every agent: select n − 1 partners proportionally to the edge weights, play the
game, update the edge weights of the agent that selected partners. After each
round the edge weights were recorded.

The simulation was developed in JDK 1.6. Random numbers were produced
using an instance of the cern.jet.random.engine.MersenneTwister class [17],
a pseudo-random number generator that has a large period of 219937 − 1.

Table 2 shows all the conditions tested in the experiments. For each combi-
nation of conditions 10 runs were performed and results averaged.

4.4 Results

We have plotted the average probability of a group of agents (all with the same
strategy) of selecting a group of agents (again all equal in terms of strategy).
We have also calculated the standard deviation.
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games
Give-Take bg = 0.5
Give-Take bg = 0

IPD

initial edge weight
random
identical

# S1 2, 4, 8, 16, 32

# S2 2, 4, 8, 16, 32

# S3 2, 4, 8, 16, 32

# S4 2, 4, 8, 16, 32
Table 2. Summary of the conditions tested in the simulations.

Figure 1 shows the results from the simulations with Give-Take and bg = 0.
In this figure we additionally show the average probability at the 10000th round.
Figure 2 shows the probability graph obtained in a simulation with 8 agents.

Figure 3 shows some results from the simulations with Give-Take and bg = 0.5
while figure 4 shows the results obtained with IPD. Since results are similar, there
are fewer plots in these figures.

5 Discussion

In the following discussion we will use the term aggregation time to refer to the
time taken for a group of strategies to mostly select themselves. That is to say,
how many rounds of edge weight updating must occur in order to observe an
approach to the condition stated by equation (1).

Initial edge weights do not influence aggregation time. This can be observed
in figures 1(a) and 1(b). Both refer to Give-Take with bg = 0 and two S1 agents.
Other numbers of S1 agents confirm these findings (results not shown).

Game nature does not influence the fact that in the long run cooperative
agents aggregate. However, aggregation time depends on game nature as well as
on agent strategies. When we compare figure 3(a) with figure 4(b), both have
the same number of cooperative strategies, but aggregation time differs. The
same line of reasoning can be established between figure 1(a) and figure 4(a),
although the first only includes simulations with initial random edge weight and
the second includes both identical and random initial edge weights. All other
number of S1 agents (see table 2) produced similar results (not shown).

In the Give-Take with bg = 0 there can be three groups of cooperative strate-
gies. However, whenever a game is played, the number of iterations may vary,
and it may not be a multiple of the time each strategy keeps the resource before
giving it. This means that in a game between strategies S3, one of them may get
a payoff lower than uP and thus decrease the probability of selecting its peer.
In figure 2, taken from a simulation with 2 agents per strategy, we show the
edge weight graph with weights lower than 0.15 omitted. It can be seen that S3
agents prefer S2 and S1 agents.
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(a) Initial random edge weights and 2
agents with S1 strategy.
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(b) Initial identical edge weights and
2 agents with S1 strategy.
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(c) Initial random edge weights and 2
agents with S1 strategy. Edge weights
taken at 10, 000th round.
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(d) Simulations with 16 S1 strategies.

Fig. 1. Results of Give-Take with bg = 0. Vertical axis represents the probability of
strategy S1 choosing a strategy in the horizontal axis. In cases 1(a) to 1(c) the results
are averages of all possible combinations of strategies S2 to S4 (see table 2). In case
1(d) we also varied the initial edge weights.

S1
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Fig. 2. Results of Give-Take with bg = 0. Probability graph in the last round of a
single simulation run with 2 agents per strategy type. Edge weights lower than 0.15
were omitted.
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(a) 4 agents with strategy S1.
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(b) 8 agents with strategy S1.

Fig. 3. Give-Take with bg = 0.5. Results are averages of all combinations of parameters
not fixed (see table 2).
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(a) 2 agents with strategy S1.
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(b) 4 agents with strategy S1.

Fig. 4. IPD results - averages of all combinations of parameters not fixed (see table 2).

Results show that the number of cooperative strategies influences the aggre-
gation time. The higher is their number the shorter is aggregation time. This can
be observed in figure 1(d), which refers to Give-Take with bg = 0 and 16 agents
with strategy S1, that has the highest probability of this strategy selecting a
peer. Comparing figures 3(a) and 3(b), which refer to Give-Take with bg = 0.5
and have, respectively, 4 and 8 agents with strategy S1, we observe that the
second figure has the highest probability. If we increase the number of rounds,
the probability of cooperative strategies to select themselves increases, as can be
seen by comparing figure 1(a) taken at the 1000th round and figure 1(c) taken
at the 10000th round.

Deterministic and stochastic strategies do not impinge on aggregation time.
Instead, strategies’ cooperative nature has an influence on it. Agents with co-
operative strategies that are part of a Pareto Optimal profile will only select
themselves.

6 Conclusions and Future Work

We have proposed and analysed theoretically a model for partner selection in
a Multi-Agent System interacting through a game. We have complemented this
analysis with an experimental simulations. The results confirm the theoretical
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analysis. In particular, game nature or initial edge weights do not influence the
final aggregation result, although the former affects aggregation time while the
latter does not. In the long run, cooperative agents will only select themselves
as partners of interaction. The number of cooperative agents strongly influences
their aggregation time. The more they are, the faster they aggregate.

This model requires a memory size that grows linearly with the number of
partners. It also requires that agents are uniquely identifiable. The agent must
know in advance the population size.

Despite some limitations, the edge weight update policy does not suffer from
the problem of a period of learning followed by a period of reaping the benefits
of education. If an agent does not get a good payoff from the current players, it
will raise the edge weights of all the other agents, giving them a chance of being
selected. However, further confirmation of this property should be tested with
simulations where new agents are periodically introduced in the population, and
the games and agents that select them should be monitored.

If agents select their partners, they can also refuse to play with certain agents.
This could lead to situations where an agent cannot play because all its neigh-
bours refuse to play. However, the possibility of refusing brings the problem of
collecting experience back. During the period in which an agent is testing its
neighbours, it may be explored by non-cooperators. In addition, after an agent
closes its learning window, new agents will never play with it, unless we allow
the reopening of the learning window.

Agent strategies are fixed. We should analyse the effects of adaptation, and
apply the edge weight update policy to a framework of evolutionary games. An
agent that cannot find a suitable partner can overcome this if it changes its
strategy.
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15. Pedro Mariano and Lúıs Correia. A resource sharing model to study social be-
haviours. In Fernando Moura Pires and Salvador Abreu, editors, Progress in Ar-
tificial Intelligence - 11th Portuguese Conference on Artificial Intelligence, EPIA
2003, pages 84–88. Springer-Verlag, 2003.

16. John Maynard Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982.

17. cern.jet.random.engine.mersennetwister class part of colt library.
http://acs.lbl.gov/ hoschek/colt/. last checked March 2009.

18. Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in multi-
agent systems. The Knowledge Engineering Review, 19(1):1–25, 2004.

19. Jordi Sabater and Carles Sierra. Review on computational trust and reputation
models. Artif. Intell. Rev., 24(1):33–60, 2005.

20. Francisco C. Santos, Marta D. Santos, and Jorge M. Pacheco. Social diversity
promotes the emergence of cooperation in public goods games. Nature, 454:213–
216, July 2008.

21. Frans van Dijk, Joep Sonnemans, and Frans van Winden. Social ties in a public
good experiment. Journal of Public Economics, 85:275–299, 2002.

22. Bin Yu and Munindar P. Singh. Detecting deception in reputation management.
In AAMAS’03. ACM, 2003.


