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Abstract. The traditional representation of the populatiossd in evolutionary
algorithms raises two types of problems: the Idsgenetic diversity during the
evolutionary process and evaluation of redundadividuals. In [11, 12] the
authors propose a new formal model (PLATO) for msett representation of
individuals and their populations which applied beuristic algorithms,
minimizes the problems identified above. This pgpe&sents a computational
representation of populations based in multisets] the adaptation of the
genetic algorithm to deal with this type of repraagion, the Multiset Genetic
Algorithm (MGA). A new operator called rescalingdsveloped as well as a
metric to measure genetic diversity. The standamktic algorithm is applied
to some types of problems using the standard amahelv type of populations
and empirical results shows the genetic diversitpcreased and the number of
individuals evaluated is decreased as expected.
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1 Introduction

Evolutionary algorithms (EA) are stochastic methdHat mimic the process of
biological evolution and have become popular téatssearch, optimization, machine
learning and design problems [1]. When applyingséhalgorithms to complex
problems where the search space is complex the feguent difficulty is the
premature convergence of the algorithm due toahk of genetic variety. Individuals
with better fithess propagate their genes in swigesgenerations leading to a
premature convergence [2]. Genetic diversity i®ietal to the evolutionary process,
and without it the EA stops at least good solutieapecially in problems that have
more than one solution (multi-modal optimizationy @volve simultaneous
objectives, multi-objective optimization.

Several strategies have been proposed to maintetig diversity at different
stages in the evolutionary process: Selection wittek pressure to fitness like
uniform or tournament selection methods; Reproduactpromoting the attraction
between elements of different individuals or usiother reproductive intelligent
operators; Mutation with several adaptive operat@sbstitution: promoting the
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replacement of individuals with similar genotypesg better fitness [2, 3, 4, 5, 6, 7,
21]. EA have revealed potential to reach good tzaarin order to find a good set of
solutions with limited computational power. The mahance of many good solutions
in parallel is desirable and good algorithms haeerbdeveloped for the clearing,
clustering, crowding, fithess sharing and specmafi®].

The efficacy of the EA is directly related to theesof the population. However, in
some applications, the evaluation of a large nunolbé@ndividuals is computationally
expensive and delays the evolutionary process. ihamze this problem we find in
literature some solutions: saving the objectivaugabf individuals in the databases,
estimating the ability of individuals using similaystems and prediction of fithess
[9,10].

All strategies above are improvements to the oaigatgorithm, which require the
redefinition of the operators and all have an iassgl computational cost. In [11, 12],
the authors introduce a new formal model using ¢bacept of multiset for the
representation of populations. This model allovesrigsolution of two problems listed
above: maintaining the genetic diversity and avajdiuperfluous evaluations. In [15]
the authors show a software prototype, based isetlideas and applied to Genetic
Algorithms (GA). This paper describes the adaptatibthe GA to a multiset based
population, also introducing a new operator callescaling. This variant is called
Multiset Genetic Algorithm (MGA). Empirical resulshow that the MGA produces
higher genetic diversity and smaller number of eatibns than the same GA using
simple population (SP). The diversity was calcuaby two measures of genetic
diversity.

2 Multisets and Multipopulations

A multiset is a collection of elements which maypear repeated. The number of
times an element occurs in a multiset is callednitsdtiplicity. The cardinality of a
multiset is the sum of the multiplicities of itseatents [13]. We can define a multiset
as a set of ordered pairs <n,e> where n is theiredity of the element e. In this
definition the set {a,a,a,b,b,c} has an equivalaepresentation in multiset
{<3,a>,<2,b><1,c>}.

EAs are based on populations of individuals in ttien of collections. In the
traditional representation it is common to haveerdpd individuals within the
population (Table 1). This can be efficiently regeted by a multiset (Table 2).
Multipopulations (MP) are populations where the ividuals are represented by
ordered pairs <n,g> where n is the number of copieke genome g. To this ordered
pair we call multiindividual (MI), and a MP is atsef Mls with number of copies
greater than zero. The set of g in a MP is caller dupport of the MP. In case of
Table 2 we have a support set with four elementgide that all of them have
different genotypes).

Populations are dynamic collections where individwae inserted, removed and
searched. To implement MP we must redefine thase thperations in the traditional
data structure to support MI.
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Search - an MP is a set of individuals, grouped in MI, aiican be
indexed. The index of an individual is defined amiage from the sum of
the multiplicity of all previous MI to this valuedded of the own
multiplicity (Table 3). Searching an individual $garching one index in
the population. This index is very important to nain the equivalence
between the MPs and the normal populations (SP)essaty for
performance comparisons.

Table 1. Population with 8 individuals of Table 2. Multi-Population equivalent of
the problem MaxOnes. the population represented in Table 1.
Genotype Fithess Copies Genotype Fitness
11111110 7 3 11111110 7
11111110 7 2 11110000 4
11111110 7 2 00001110 3
11110000 4 1 00000010 1
11110000 4
00001110 3
00001110 3
00000010 1

Table 3. Indexing Multiindividuals in the Multipopulation dfable 2.

Copies Genotype Fitness Indexes
3 11111110 7 0,1,2
2 11110000 4 3,4
2 00001110 3 56
1 00000010 1 7

Insert - when an individual is appended to the MP, that fiperation is to
check if there is already a MI with the same gepetyif true this

operation increases the number of copies of théoNiicorporate the new
individual, if false the individual is inserted ihe population and the
number of copies is one (Table 4).

Table4. Append the individual “11111110" and “00000006"the MP of the Table 3.

Copies Genotype Fitness Indexes
4 11111110 7 0,1,2,3
2 11110000 4 4,5
2 00001110 3 6,7
1 00000010 1 8
1 00000000 0 9
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* Remove - the elimination of an individual of one MP is reo
decrementing the number of copies of the MI. If tuenber of copies decays
to zero, the Ml is removed from the data struc(iable 5).

Table 5. Remove the individual at the index 7 (“00001118Md the individual “00000010”
(index 8) in the MP of the table 4.

Copies Genotype Fithess Indexes
4 11111110 7 0,1,2,3
2 11110000 4 4,5
1 00001110 3 6
1 00000000 0 7

Appending and removing individuals in the MP proglticone search for the
individual genotype into the MP, incrementing th@mputational complexity to the
evolutionary process. To minimize this issue th&addructures to support MP must
be efficient in search, not only to select indivaéi) but also to add and remove them
from the MP. Random access is another importarecdpr the implementation of
some genetic operators.

Genetic Diversity

Genetic diversity is based on the Hamming distametsveen individual genotypes.

This measure between two bit strings returns thabmu of bits that are different in

the genotype representations. By applying the ganineiple to the entire population

we can calculate the Hamming distance of an indafidn relation to the population

as the sum of Hamming distances between it andhellother elements of the

population. The genetic diversity of the populatisrgiven by the sum of Hamming

distances of the individuals that compose it. Windea measure called the genetic
diversity consisting on a normalized form of thenkhaing distance for binary strings.

It can be efficiently computed as

I 1
genetic_diversity:niz'IZIg(n—lg), @
i=0

wherel is the number of bits of each individulglthe number of ones of the allela
the population anch the population size. The maximum diversity is WBen the
percentage of alleles for each gene is 50%, anchthenum diversity is 0.0 when all
genes have the same value. This measure produnéarsiesults topop_diversity
[20] but is computationally more efficient and srmalized to interval [0, 1].

Different alleles

The number of different alleles in the populatisranother diversity measure, which
calculates the amount of genes that are not firetthe population [14]. This metric
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can measure the ability of a population to expltre search space through the
recombination operator.

The maximum diversity is obtained when the popatatias different alleles in all
the genes and the minimum value is obtained whetha@lgenes have the same value
overall the population, which means all individuate identical.

Equation (2) shows the normalized form of the measu

| @
>a

different_allels ==—,

wherel is the number of bits of each individual amds zero if all the alleles of the
genei have the same value and one otherwise.

3 Adaptation of the Genetic Algorithm to Multi-Populations

The simple GA (SGA), when using the MP and the itiathal operators, benefits
automatically of the reduced number of evaluatiand increased genetic diversity.
The number of evaluations is decreased becausectregvaluate many individuals
at once (one multiindividual), and the genetic dsity of the population is increased
because all the Ml in the support set have diffegemotypes.

The individuals with best fithess increase theimber of copies in successive
generations. If this number of copies is not cdtadthe benefits of the MP may be
decreased due to the huge number of copies ofabteitdividuals. We can adapt the
common EA operators to this new representation,ablighter intervention can be
considered by just introducing a new operator. Wilsallow us to compare results
of the SGA with the Multiset Genetic Algorithm (MGA

Rescaling

To control the number of copies of the individuais adapted the schema defined in
[11, 12] and introduced a new operator in the dgengtocess: rescaling (Fig. 1).
Rescaling is a population operator that changesniimaber of copies of a Mi
preventing it from taking over population. We digithe number of copies of each
individual by a factor and assign the num of copies to the smallest intdgd is
greater than the division. Fig. 2 shows the eftd¢he operator in a population of 128
individuals of the problem Maxones over 250 gerienst

With the factorr equal to 1.0 the number of individuals grows irccassive
iteration. This is due to keep constant the nunadfeM! in the population where the
fittest individuals accumulate copies in the eviolnary process. Higher values iof
stabilize the number of copies of good individu@isperimental results show that the
value of 1.5 to factor it's a good compromise between number of indivisiend
number of Ml in the population.
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Fig. 1. Optimization Algorithms Operators

In the first steps of the evolution the numberrafividuals increases more slowly
because there is no individual with greater fitnixss) the others, and the number of
copies is small.

average of number of individuals
N

o 2 50 75 100 125 150 175 200 225 250
generation

— - r=11 — =r=13 r=15 —===r=17 — =r=19 r=2.1

Fig. 2 Effect of rescaling in the number of individualstire population

4 Empirical study

In our empirical results we use the MUGA simuldtds] to show the effect of MP in

the evolutionary process in comparison to SP. Tasuee the effect of the MP in the
evolutionary process we use standard GA operamrsvblve the two types of

populations: SGA — GA that evolve simple populateord MGA — GA that evolve

multipopulations. The parameters of the GA are effuahe two types of models and
are displayed in Table 8.



Genetic Algorithms using Populations based on Mett 59

Table 8. Parameters used for SGA and MGA except rescatinty (n MGA).

Population size 128 individuals or multiindividuals
Mate population size 128 individuals

Selection Binary tournament

Combination Crossover 1-cut point, probability =75%
Mutation Bitwise mutation with probability =1%
Replacement Binary tournament with no reposition
Rescaling Factor=1.5

Iterations 2500 generations

We use three functions to investigate the effed?lBf Royal Road Function R1 [16],

Knapsack [20] and MZ1 [18]. We perform 64 runs éach problem. In each one a
new random population is generated and assignbdttoMGA and SGA. The results

presented below are the arithmetic means of the performed.

Royal Road Function R1

This function is designed to investigate, in detasichema processing and
recombination [16]. It uses a 64 bit string. Itusimodal and the search space is
organized in steps with constant size.

ofindividuals

average of

generation generation
~~—~#optimaSGA - —— # optima MGA ~=~=BestSGA ——BestMGA

Fig. 3 - Average of number of optima found Fig. 4 - Average of value of best individual
by generation. found by generation.

This function has one maximum and it is hard t@al®r with no genetic diversity.
MGA found the solution 90.6% of the runs and SGArfd the optimal solution 7.8%
of the runs (Fig. 3, Fig. 4 ). Fig. 5 and Fig. ®wstthe population diversity (different
alleles and genetic diversity). The diversity of tiSGA is good because the
population does not converge and there are marat lnaxima. MGA has a higher
diversity, explained by the constant size of thppsut set. This genetic diversity in
SP eventually generates the best solution but itenations are necessary. If we take
all tests up to 2500 generations we notice the rurabevaluations in MGA (22700)
is lower than in SGA (29500) (Fig. 7). The numbéindividuals in MGA stabilizes
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in 166 after a few generations (Fig. 8). In theibeipg of evolution the number of
individuals increases because there are many foaalma with the same fitness. In
each higher fitness plateau the number of localimaxdecreases which leads to the
stabilization of the number of individuals in a Sieavalue.

average of different allels
average of genetic diversity

250 soo 7so looo 1250 1so0 1750 2000 2250 2500 o 250 So0 750 1000 1250 1500 1750 2000 2250 2500

eneration generation X
i DFSGA & = DF MGA —===GDSGA — GD MGA

Fig. 5 - Average of number of different alells Fig. 6 - Average of genetic diversity by

of the population by generation. generation.
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~—~~Evaluations SGA luati MGA ————#ind. SGA #ind. MGA

Fig. 7 - Average of accumulated evaluations Fig. 8 - Average number of individuals by
per generation. generation.

K napsack

Knapsack is a well know NP-complete combinatoriafirnization and we use it to
show the effects in combinatorial optimization gesbhs. We implement the problem
presented in [20]. The maximum capacity is 50%hef total height and penalization
is done by the linear function of [18].
Experimental results show that the problem hasatlfour maxima with the best
value known of 1920:
00000111110100101100100101111010011010101111110111
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00001111110100101100100101111010001010101111110111
00001110110100101100100101111110111010001111110111
00001111110100101100100101111010111010101110110111

average of number ofindividuals

1250 1500 1750 2000 2250 2500

general tion
———# optimus MGA

2  so0 750 1000

===~ optimus SGA

average of best fitness

—==-BestSGA

1550

50 100 150

Fig. 9 - Average of number of optima found Fig. 10 - Average of value of best individual
found by generation.

by generation.

The MGA always found four optimum solutions (Fig.&hd the SGA found one
optimum 67.1% of the runs. In both simulations adysolution is found. The mean
of the best values for SGA is 1915.4 and for MGA%20 (the best known) (Fig. 10).

average of different allels
D F
s
% o

00 1250
generation
~—~~-DF SGA ——DFMGA

average of genetic diversity

Lo0

-~~~ GD SGA

generation

Fig. 11 - Average of number of different
alleles of the population by generation.

Fig. 12 - Average of genetic diversity by
generation.

The number of different alleles (Fig. 11) and gandiversity (Fig. 12) in SGA
converge to zero while in MGA they converge to adjoatio: 41.9% of different
alleles and 18.7% of genetic diversity. This ladkgenetic diversity explains the
difficulty of SGA to find optimum solutions. The mber of evaluations is 10.8%
higher in SGA and the number of individuals in MG#abilizes in 226. The higher
number of individuals is explained by the numbethaf optima found by the MGA.



62 A. Manso, L. Correia

MZ1

MZ1 [18, pp. 36] is a bidimensional function defihin a continuous space and we
use it to show the effect of MP in numerical optiation based in real numbers coded
in binary strings. The fitness function is descdib®y equation 3. Variable;xs
defined in the interval -3.8 x,<12.1 and coded by 18 bits and variabjesxdefined

in the interval 4.K x,<5.8 and coded by 15 bits.

MZ1(X,,X,) =215+ X, Sin(47x, ) + X, Sin(R07x, ) . (3)

average of best fitness

388 {

250 so0 70 leoo 1250 1500 4750 2000 2250 2500 0 250 S0 7SO 1000 1250  1S00 1750 2000 2250 2500

generation generation
====5 optimus SGA i optimus MGA ==~=Best SGA = Best MGA

average of number ofindividuals

Fig. 13 - Average of number of optima found Fig. 14 - Average of value of best individual
by generation. found by generation.

average of different allels
average of genetic diversity
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generation generation
====DFSGA ——DFMGA ~~—~GDSGA

GDMGA

Fig. 15 - Average of number of different Fig. 16 - Average of genetic diversity by
alleles of the population by generation generation

We notice that the results of MGA in this probleme aot as good as in the
previous ones. Optimization of complex functions dificult for SGA due to
premature convergence of the population. In MGA also notice premature
convergence (Fig. 13 and Fig. 14), in spite of¢bastant population diversity (Fig.
15 and Fig. 16). This is due to the fact that MG¥werges to a local maximum and
uses the genetic diversity to form a cluster aratinthe number of individuals in the
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MP stabilizes in 338, which is a high number re@sglfrom many MI with similar
high fitness.

5 Conclusion

In this paper we present an implementation of G#wgopulations represented by
multisets, named Multiset Genetic Algorithm (MGA)his model introduces a new
operator called Rescaling, to allow a comparisotween MGA and the Simple
Genetic Algorithm (SGA). We performed experimetglétermine an adequate value
for the division factor parameter of the new oparatA metric called genetic
diversity, implementing in an efficient way a nolimad Hamming distance was
proposed to evaluate the performance of the diffemodels.

We conducted a series of tests in different probletm determine the behavior of
the MGA during the evolutionary process and to caraphe results with the SGA.
The number of evaluations in MGA is lower than B/&in all the tests. MGA has
the largest genetic diversity in all situationsisThelped to reach the optimal solution
in Royal Road Function R1 and to find and maintifferent optimal solutions in the
knapsack problem. MGA in MZ1 problem did not getuks as significant as in the
other problems, but showed some directions to ¥olin the future. The cluster
around a local maximum takes the entire genetierdity through bits with little
significance to the global optimum. The conceptnaifiltiindividual (MI) can be
redefined with the incorporation of metrics thabwai a single MI to represents similar
genotypes instead of a single one. Some metricbaing study and will be subject to
investigation in the near future.

This work presents the impact of MGA in a optimiaat process using
conventional genetic operators. The standard gemgterators could be redefined,
and new ones can be developed take to advantae atimber of copies of the MI.
Some operators have already been adapted and esenprin MUGA[15]. In the
future they will be subjected to analytical treaht® determine their efficiency.

The use of multipopulations involves a computaticféort grouping individuals
in a MI. Efficient data structures that supporticdint search and random access to
the individuals will be researched to minimize tdmnputational effort.

The results of the experiences reinforce our cdioric that a multiset
representation of the population is a powerful waypreserve genetic diversity, to
avoid superfluous evaluations and, therefore, tgniicantly improve the
performance of GA.
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