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Abstract. In this paper we discuss short term traffic congestion predic-
tion, more specifically, prediction of the sudden speed drop when traffic
resides at the critical density point. We approach this problem using
standard machine learning techniques combining information from mul-
tiple sensors measuring density and average velocity. The model used
for prediction is learned offline. Our goal is to implement (and possibly
update) the predictive model in a multi-agent system, where coupled
with each sensor, there is an agent that monitors the condition of traffic,
starts to collect data from other sensors located nearby when necessary
and is able to predict local sudden speed drops so that drivers can be
warned ahead of time. We evaluate Gaussian processes, support vector
machines and decision trees not only limited to predictive accuracy, but
also the suitability of the learned model in the setup as described above,
i.e., keeping in mind that we want the warning system to be decentralized
and want to ensure scalability and robustness.

Keywords: road traffic, short term velocity drop prediction, critical
density, machine learning, multi-agent system

1 Introduction

The bulk of existing work on traffic prediction focuses on density [7, 1] and
occupancy [16] prediction. The systems that use these predictions are employed
to traffic management purposes [5].

In this paper, we focus on short-term predictions of traffic velocity instead.
Our goal is to design a distributed system that can predict the sudden, local
drop of speed that marks the start of congested traffic. If local predictions can
be made with sufficient accuracy, we can warn oncoming traffic of the expected
trouble ahead of time. Specifically, we are interested in the question: “Can we
predict local future velocity drops at the critical density point in a decentralized
way?”
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The critical density point is the density at which the behavior of traffic is
least predictable. Traffic flow can be distinguished into regimes [15]: free-flow,
capacity-flow, congested, stop and go and jammed traffic. In free-flow traffic, ve-
hicles can travel freely at their desired speed. When more and more vehicles join
in, free-flow traffic gets denser until it reaches the capacity-flow, i.e., the maxi-
mum number of vehicles able to maintain free-flow traffic. The border between
capacity-flow and congested traffic is the critical density point and is situated
around 25 vehicles per kilometer per lane [20]. In this paper, a practical attempt
to predict the future velocity at this transition point is made using standard ma-
chine learning algorithms. The experimental setup consists of sensors and agents
that try to predict the future average velocity within their own range, using self
collected data and data from the surrounding sensors. The experiments are build
upon traffic simulation software [17] in which an intelligent driver model realis-
tically directs the behavior of the individual vehicles [18] and use the machine
learning suite Weka [21] for the machine learning components.

2 Predicting traffic congestion

Figure 1 represents the average velocity in meters per second as measured by
a sensor over time and illustrates the prediction task we focus on in this work.
The plot of the average velocity will be slightly different for sensors at different
locations, but the sudden drops look similar in each plot. We consider the sudden
drop to be the most useful information to predict, since it can be used to notify
drivers of an upcoming dangerous situation. If drivers can be notified 1 km
in advance that a strong reduction in speed is expected, it could significantly
lower the probability of an accident happening due to distractions or a loss in
concentration. Note that we focus on the region where the velocity stays more
or less constant until the drop. The area indicated by B represents stop and go
waves. Once traffic is in a stop and go wave, it will stay in a stop and go wave
if the density does not drop drastically. The backpropagation of such a wave is
easier to predict and has been handled in previous work [18]. In this work, we
will focus on predicting the transition from A to B when, from the view of the
driver, the congestion is hardest to anticipate.

The Dutch traffic information service divides traffic congestion into three
subclasses: slow traffic (min 25 km/h and max 50 km/h for minimum 2km),
stationary traffic (max 20 km/h) and a combination of both [9]. The chosen
cut off point for the velocity is 7 m/s, which more or less equals 25 km/h. The
vertical line in figure 1 indicates the time of this drop below 7 m/s.

We will approach this problem using supervised machine learning. Supervised
machine learning builds predictive models using labelled training examples. This
model can then be used to make predictions about the labels of previously unseen
examples. The task of our learning problem is: “Given data from a local sensor
and its surrounding sensors, learn a model that correctly predicts the velocity
drop”. For this feasibility study, we use the Weka tool [21], which implements a
number of different machine learning algorithms.
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2.1 Setup

The setup for the experimental study is reasonably simple. We used Treibers
software [17] to simulate a ring road with an average speed and density sensor
every kilometer. The range of each sensor was set to 350 m as is standard for
traffic cameras [10]. A ring road was chosen, because it models a straight road
with infinite history which is long enough to get congested traffic. Figure 2
illustrates the used setup. While this setup represents only an initial study, it
allows us to illustrate a number of important issues. Learning data was collected
by taking a snapshot of sensory information 4 times each second. To this snapshot
we added the local average velocity as measured a fixed time t into the future.
Different values of t were tried as will be discussed later.

2.2 Predicting numerical velocity

In a first step, we try to predict the future velocity using a regression algorithm,
i.e., a learning algorithm that predicts a real value as an outcome. The learning
algorithm we use was Gaussian processes with a radial basis function (RBF)
kernel. Gaussian processes represent a strong baseline for regression [8]. Non-
linear kernels, such as the RBF kernel, perform well when dealing with a large
number of learning instances with a relatively low number of features [6, 3].
In short, Gaussian processes implement a non-parametric Bayesian technique.
Bayesian regression techniques assume a prior distribution over the function
hypothesis space (usually over the parameter vector defining the function) and
calculate a posterior distribution using Bayes rule and the available learning
data. Instead of assuming a prior over the parameter vectors, Gaussian processes
assume a prior over the target function itself. We refer to [14] for a more elaborate
discussion of the workings of Gaussian processes

As the covariance function required by Gaussian processes, we use a RBF
kernel defined as K(xi, xj) = exp(−γ||xi − xj ||2) (illustrated as K(xi, xj) =
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exp(−γr2) in figure 3) [6]. The γ parameter controls the width of the kernel and
thereby the amount of generalization used by the Gaussian processes. Higher γ
values result in less generalisation. A small search over the γ of the RBF showed
that γ equalling 1 gave better correlation results over other values. The correla-
tion is an indication in how much two coeffients are related to each other. In this
case how the predicted values and the actual values relate. All other learning
experiments with Gaussian processes will use this value for the γ parameter.

Gaussian processes also allow specification of a measurement noise level. The
way the sensors measure velocity as the average speed of passing traffic, gives
rise to a natural measurement noise level, i.e., the standard deviation of the
measured velocities.

Since we are trying to make predictions about the transition between free
flow traffic and congested traffic, we need to collect data from both the A and
the B region of Figure 1. Since we don’t want to predict stop and go traffic, the
amount of data from region B must be limited. Figure 4 shows how collecting
more data after the transition influences the measured correlation. More data
collected after the transition raises the prediction correlation. If data is collected
for a time period longer then 30 seconds, the measured data originates from the
B area which seems easier to predict. In this view, a collection time close to but
below 30 seconds (the lowest studied prediction time) seems to be a good choice.

To test the need for a MAS approach in our sensor system, we first compared
correlation results of using data from only the local sensor to data collected
from a total of nine surrounding sensors (local, plus 4 sensors before and 4
sensors behind the target point). The training examples contain the velocity
and the density from the participation sensors and the future velocity as the
label to be predicted. Table 1 shows that (not surprisingly) using information
from multiple sensors gives better correlation results than information from only
the local sensor, which supports the need for multi-sensor cooperation in this
type of prediction task. The gain of using multiple sensors ranges from small at
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a prediction time of 30 seconds, i.e. when predicting what the measured velocity
will be 30 seconds in the future, to substantial when the prediction time increases.

Table 1. Correlation results

Pred. time 1 camera 9 cameras

30 0.81954 0.84855
60 0.68813 0.78329
120 0.43739 0.73997

Table 2. History

Pred. time ∆t = 0 ∆t 6= 0

30 0.84855 0.85594
45 0.79709 0.82672
60 0.78329 0.80898
90 0.75415 0.79424
120 0.73997 0.78293

As measured velocity is sequential data where trends in the measurements
might be highly informative we also investigated the predictive gain of past
measurements or “sensory history”. Using data from ∆t time ago together with
current measurements gives rise to better correlation results than using current
information alone. Tests show that the exact value of ∆t is of less importance.
The correlation results are similar for ∆t ranging from 5 to 30 (averaged in
Table 2) and significantly better than the results of using no history (∆t = 0
in the table). The higher the prediction time, the bigger the gain from using a
history.

Figure 5 shows a detailed plot of real future velocities (x-axis) versus pre-
dicted velocities (y-axis) for a prediction time of 60 seconds and ∆t = 10. Data
was collected until 25 seconds after the velocity drop. Area C at the top right
shows a high correlation between real and predicted at high velocities. These are
the recorded velocities before the transition, when traffic is still in free-flow. After
the velocity suddenly drops, the model has more difficulties to make correct pre-
dictions. In area A and B, representing stationary and slow traffic respectively,
future velocities are often predicted too high.

While using Gaussian processes delivers reasonable predictive results they do
present a different difficulty. The learned model is large and consumes a large
amount of memory and when making predictions, the model has to perform a lot
of computations. This makes the model less suitable for agent purposes. Other
regression techniques are expected to, at best, deliver only comparable results.

2.3 Predicting classified velocity

Since regression turns out to be hard, we study the use of classification for our
congestion prediction problem. Classification is concerned with the prediction
of nominal labels instead of numeric ones. In our problem, we consider three
different types of traffic, and thus three possible labels: stationary, congested
and normal traffic. These types are based upon the Dutch traffic information
service. Stationary means speed below 7 m/s, congested is below 14 m/s, normal
traffic is above 14 m/s. These are also the areas marked in figure 5.
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Fig. 5. Predicted velocity versus actual future velocity

The performance of the model will be examined by following quality evalua-
tors: [21]

Accuracy is the overall probability that the model makes a correct prediction.
Recall is the percentage of actual positive instances that are predicted as posi-

tive, also called the true positive rate. In our traffic warning system, this will
indicate the percentage of velocity drops that are predicted as such.

Precision is the percentage of positive predictions that are real positive in-
stances. In our warning system, this gives an indication of the number of
false alarms, i.e., precision = 1−(% of false alarms).

Since we are dealing with a 3-class prediction problem, we define a positive
prediction to be a correctly classified instance, meaning e.g. ‘normal’ has been
classified as ‘normal’ and a negative prediction as a wrongly classified prediction,
meaning e.g. ‘congested’ has been classified as either ‘normal’ or ‘slowdown’.

Support Vector Machines In a first step we used a classification approach,
very related to the Gaussian processes used for regression before: support vec-
tor machines (SVM). In short, SVM’s classify examples using a linear decision
boundary. In most cases, linear decision boundaries are not expressive enough
to separate examples from different classes and therefor SVM’s use a non-linear
transformation on the input space to a new, high-dimensional, space. This way,
a linear model in the new space can be a non-linear decision boundary in the
original space [4]. The algorithm we used for training the SVM is Sequential Min-
imal Optimisation (SMO). SMO is very fast with linear kernels and reasonably
fast with non-linear kernels. The memory footage grows linear with the training
set, which means large training sets are possible [11]. For the input space trans-
formation, we again used an RBF-kernel. To determine the best values for the
parameters C (SMO) and γ (RBF) we again performed a grid search. C = 10
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and γ = 1 gave the best results and all following experiments were preformed
using these values.

Table 3 shows the influence of history on the evaluators. While recall is
hardly influenced by adding history, it does make a difference for the accuracy
and precision of the model. When no history is used (∆t = 0 in the Table), the
results are somewhat worse than with the use of history. Since again the results
for various values of ∆t 6= 0 are similar, Table 3 shows averaged evaluation
values.

Table 3. SVM: impact of the use of history

∆t = 0 ∆t 6= 0

Pred. time Accuracy Recall Precision Accuracy Recall Precision

30 93.050 98.714 95.664 93.618 98.641 96.417
45 92.116 98.621 94.163 92.553 98.216 95.459
60 90.517 98.518 92.695 91.481 97.942 94.527
90 88.605 97.395 92.035 90.088 97.501 93.562
120 86.402 97.091 89.810 88.433 97.398 91.917

The model learned by SMO is small enough to be implemented into simple
agents. The size ranges from 200 kB to 1 MB. One problem with using SVMs in
an application as critical as traffic warning systems is that the learned model is
pretty much a black box, and that it is next to impossible to interpret its decision
strategies. More importantly however, the true positive rate on congested and
slowdown are quite low. For example with a prediction time equal to 60 and
history ∆t = 10, the true positive rate for the prediction of normal traffic is
99.6 %, while the true positive rate for congested traffic is only 55.6 % and for
slowdown only 17.6 %. While SMO is quite good at predicting normal traffic,
it has significantly more difficulties with congested traffic and performs even
worse on slowdown. Since these are exactly the conditions our warning system
is looking for, this will not do.

Decision Trees To alleviate both problems indicated above, we tried decision
trees on the same classification problem. Decision trees are a machine learning
technique that employs a “Divide and Conquer” approach [12]. Decision Trees
can easily be converted into rules and thus, the decisions they make can be in-
terpreted and checked by a human, which is an advantage in critical applications
such as traffic control.

We used the Weka variant of the C4.5 algorithm [13] as a decision tree learner.
C4.5 has been a benchmark algorithm for a long time. In Weka, the algorithm is
implemented as J48 [21]. Test results show that sensory history doesn’t influence
the quality evaluators significantly. Table 4 shows the results for different pre-
diction times. Not surprisingly, the predictive performance drops with increase
prediction time.
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Table 4. DT: results

Pred. time Accuracy Recall Precision Rules

30 91.648 97.625 95.368 68.235
45 90.129 96.346 94.532 87.520
60 88.928 95.755 93.796 100.24
90 86.316 94.435 92.283 124.52
120 83.970 91.195 89.112 144.82

The results are close to those obtained using the support vector machine.
Using only a reasonably small number of rules (indicated in Table 4) the model
performs comparable to the more computation intensive SVM model. However,
with respect to the precision for the important classes, i.e. congested and slow-
down, decision trees actually perform better. Using a prediction time equal to
60 and ∆t = 10 as as before, the true positive rate for ‘normal’ is slightly worse
than the results of SMO: 95.8% but those for ‘congested’ traffic and ‘slowdown’
actually improve significantly. Congested traffic has a true positive rate of 75.1%
and slowdown of 53.4%. This means that fewer incorrect warnings will be given
using decision trees than using the SVM model. An extract of the tree build for
this test is shown below:
PrevVelocity4 <= 13.141108
| PrevVelocity5 <= 17.9016
| | PrevVelocity3 <= 9.702755
| | | PrevVelocity1 <= 15.582357
| | | | PrevVelocity1 <= 12.889484: slowdown
| | | | PrevVelocity1 > 12.889484: normal
| | | PrevVelocity1 > 15.582357: congested
| | PrevVelocity3 > 9.702755
| | | PrevVelocity4 <= 12.566312: congested
| | | PrevVelocity4 > 12.566312
| | | | PrevDensity0 <= 85.714286
| | | | | PrevDensity3 <= 45.714286: congested
| | | | | PrevDensity3 > 45.714286: slowdown
...

3 Feasibility study

We want to make scalability and robustness important design criteria for our
congestion warning system and therefor approach it as a distributed multi-agents
system. In a first, simple design, each agent of the multi-agent system consists of a
sensor, a repository and a decision maker. The sensor collects the necessary traffic
information for prediction purposes and stores it into the agent’s repository.
The decision maker periodically checks the repository. When a certain density is
encountered, the decision maker also collects information from other neighboring
agents. The decision maker predicts the traffic speed state within the near future
using the machine learned model, the data in the repository and the data received
from the other agents. This decentralized approach ensures scalability. Adding
more agents with the same machine learned model is easier than adjusting a
central decision controller. There is no single point of failure. One failing agent
will at most influence its eight neighboring agents.
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3.1 Practical approach

We have evaluated the multi-agent system approach in a simulation setting [17].
In this simulation, the sensors which represent the sensory part of the agents are
modeled as virtual camera’s. The camera’s are placed equidistant at 1 km from
each other and their range is 350 m.

Street

Network

scheduler

decission maker

communication unit

Agent

repository

perception

Fig. 6. Camera structure

The agent architecture can be found on Figure 6. The perception unit (the
virtual camera) collects information from the street and calculates the density
and intensity. This information is stored into the repository. The scheduler pe-
riodically stimulates the camera to take a snapshot, perform calculations and
store the results. The decision maker checks the stored data in the repository.
If the density is within the critical density, the decision maker will request the
data from the neighboring agents. The collected data is then presented at the
machine learned model, in order to predict the future velocity. The collection of
data from the other agents, happens through the communication unit.

The repository stores and keeps history of the density and intensity measured
by the perception unit. It also stores the neighboring agents. This neighbor in-
formation is useful for the decision maker. It ensures the data from the correct
neighbors is collected. The neighboring agents are found using a bootstrap pro-
cess. When the camera starts up, the camera broadcasts its existence and asks
for other cameras within its range. The scheduler periodically stimulates the
repository to check the correctness of the position of the relevant neighbors.

The number of agents is limited by the bandwidth of the communication net-
work. If all agents would request specific neighbor information at the same time,
it could overload the network. Alternatively, all information could be broadcasted
and logged at each agent, but this would undo the local view of the agents.

3.2 Placing the model (and learner) inside the agent

The learned model from section 2 is part of the decision maker. The type of
information requests to the neighboring agents will depend on the model, e.g.,
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some models need historical data while others don’t. For prediction purposes,
Weka itself can be included. Switching models is easy in this approach, since it
only requires the loading of a different model. The disadvantage is that Weka is
somewhat big to be included inside an agent. Decision trees, for example, can
easily be converted to rules and implemented inside the decision maker. Weka
straightforwardly supports the generation of rules (java code) from the learned
decision trees. The advantage of including Weka as part of the agent is that the
prediction model could be adapted online as discussed in future work.

4 Related work

Related work on traffic and congestion prediction is quite extensive and a large
scale overview is well beyond the extend of this paper. A lot of existing work
focuses on long term predictions, such as the work by Yasdi [22], that predicts the
density on weekly, daily and hourly basis through the use of a neural network.
The goal of the predictions is use them to reroute traffic to keep the density on
the roads below the critical point and avoid congestion formation completely.
The decisions are made at a central point. In contrast, we focus on short term
predictions of the average velocity on a short road segment in a distributed
system.

Abdulhai et al. [1] try to predict the density within minimum 30 seconds
an maximum 15 minutes, also using a neural network. The used densities all lie
within free flow boundaries. The results show that the farther into the future
one tries to predict, the more the neural network tends to predict the average
density. The data is collected from 9 loop detector stations and the prediction
is done centralized.

A very different approach for the prediction of congested traffic is an ant
based system [2]. Every vehicle leaves a trail of pheromones, based on the traffic
information. In this setup, vehicles themselves are able to predict congestion
from the information of preceding cars. The density and velocity aren’t measured
directly but predicted through the accumulation of virtual pheromones.

Huisken et al. [7] compare time series analysis (ARMA) and neural networks
(MLF) performance in predicting congestion through density estimation on a rel-
atively short-term time scale (5 - 15 minutes) and conclude that neural networks
gave the best results.

Taylor et al [16] try to predict the volume and the occupancy of traffic using
a multilayer perception network. The prediction happens one minute in advance
on data from 6am until 9am during weekday’s. The performance of prediction
is tested using the mean squared error. The neural network seems to perform
quite well.

In contrast to all related work discussed above, we predict actual short term
velocity drops when traffic is at the critical density point, instead of estimating
density related values.
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5 Conclusions

In this paper, we evaluated the use of machine learning techniques for the predic-
tion of the average velocity of traffic at the critical density point. The machine
learning models were trained using data from multiple cameras. The models were
evaluated on their correctness and interpretability. Decision Trees gave the best
results in both.

The warning system itself was designed as a multi-agent system. The agents
contain the learned model, check their environment using a camera view for
critical densities and when traffic resides at the critical density point, start to
collect data from other cameras and use the learned model for short term velocity
or congestion predictions. The model will trigger an alarm when congestion
eminent and warn upcoming drivers that traffic is slowing down. These alarms
and models can hopefully be used to lessen the occurrence of stop and go traffic.

In the current setup, failure of an agent influences the predictive capacities
of the neighboring agents. To increase robustness, probability nodes instead of
decision nodes can be used inside the decision tree when decision critical data is
unavailable. Instead of deciding which path to take based on the (unavailable)
data, the probability of the missing condition can be used to combine the de-
cisions made by the child branches. This would mean that failure of one agent
does not imply that eight other agents are also unable to make any predictions.

The proposed structure should be tested on real traffic data instead of simula-
tion data. Considering that the simulator implements realistic driving behaviors,
we expect at least some of our conclusion to carry to the real world.

Another interesting next step is letting the agents change their environment
by warning drivers or implementing some speed limitations. Changing the en-
vironment will automatically cause the learned models to become wrong, rais-
ing the need for online learning. By integrating the machine learning algorithm
within the agents, the model can be optimized online to account for local road
specifics. Utgoff [19] presented an algorithm for incremental decision tree learn-
ing. Since agents collect data at the critical density point for prediction no extra
communication overhead is caused to collect online training data.
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